Genetically encoded visible fluorescent proteins (VFPs) are a key tool used to visualize cellular processes. However, compared to synthetic fluorophores, VFPs are photophysically complex. This photophysical complexity includes the presence of non-emitting, dark proteins within the ensemble of VFPs.
View Article and Find Full Text PDFBackground: Organ damages following hemorrhagic shock (HS) have been partly attributed to an immunological dysfunction. The current challenge in the management of HS patients is to prevent organ injury-induced morbidity and mortality which currently has not etiological treatment available. Mesenchymal stromal cells (MSC) are used in clinical cell therapy for immunomodulation and tissue repair.
View Article and Find Full Text PDFThe heat shock response is characterized by the transcriptional activation of both hsp genes and noncoding and repeated satellite III DNA sequences located at pericentric heterochromatin. Both events are under the control of Heat Shock Factor I (HSF1). Here we show that under heat shock, HSF1 recruits major cellular acetyltransferases, GCN5, TIP60 and p300 to pericentric heterochromatin leading to a targeted hyperacetylation of pericentric chromatin.
View Article and Find Full Text PDFIn a subset of poorly differentiated and highly aggressive carcinoma, a chromosomal translocation, t(15;19)(q13;p13), results in an in-frame fusion of the double bromodomain protein, BRD4, with a testis-specific protein of unknown function, NUT (nuclear protein in testis). In this study, we show that, after binding to acetylated chromatin through BRD4 bromodomains, the NUT moiety of the fusion protein strongly interacts with and recruits p300, stimulates its catalytic activity, initiating cycles of BRD4-NUT/p300 recruitment and creating transcriptionally inactive hyperacetylated chromatin domains. Using a patient-derived cell line, we show that p300 sequestration into the BRD4-NUT foci is the principal oncogenic mechanism leading to p53 inactivation.
View Article and Find Full Text PDFAstroglial reactivity associated with increased production of NFkappaB-dependent proinflammatory molecules is an important component of the pathophysiology of chronic neurological disorders such as multiple sclerosis (MS). The use of estrogens as potential anti-inflammatory and neuroprotective drugs is a matter of debate. Using mouse experimental allergic encephalomyelitis (EAE) as a model of chronic neuroinflammation, we report that implants reproducing pregnancy levels of 17beta-estradiol (E2) alleviate ongoing disease and decrease astrocytic production of CCL2, a proinflammatory chemokine that drives the local recruitment of inflammatory myeloid cells.
View Article and Find Full Text PDFWe identified HMGB4, a novel member of the HMGB family lacking the acidic tail typically found in this family. HMGB4 is strongly and preferentially expressed in the adult mouse testis and weakly in the brain, but not in many other tissues. HMGB4 associates with chromatin, and in transfection assays, in contrast to HMGB1, it acts as a potent transcriptional repressor.
View Article and Find Full Text PDFBefore fertilization, the genome packaging of male and female gametes is very different. Indeed, whereas the female haploid genome is associated with histones in a somatic-like chromatin structure, most of the male genome is tightly bound to protamines. However, it has recently been demonstrated that the pericentric heterochromatin regions of the male genome are associated with specific H2A-like histone variants, named H2AL1 and H2AL2, suggesting a heterogeneous organization.
View Article and Find Full Text PDFA cellular defense mechanism counteracts the deleterious effects of misfolded protein accumulation by eliciting a stress response. The cytoplasmic deacetylase HDAC6 (histone deacetylase 6) was previously shown to be a key element in this response by coordinating the clearance of protein aggregates through aggresome formation and their autophagic degradation. Here, for the first time, we demonstrate that HDAC6 is involved in another crucial cell response to the accumulation of ubiquitinated protein aggregates, and unravel its molecular basis.
View Article and Find Full Text PDFDuring male germ cell postmeiotic maturation, dramatic chromatin reorganization occurs, which is driven by completely unknown mechanisms. For the first time, we describe a specific reprogramming of mouse pericentric heterochromatin. Initiated when histones undergo global acetylation in early elongating spermatids, this process leads to the establishment of new DNA packaging structures organizing the pericentric regions in condensing spermatids.
View Article and Find Full Text PDFHSPA2 (formerly HSP70.2) is a testis-specific member of the HSP70 family known to play a critical role in the completion of meiosis during male germ cell differentiation. Although abundantly present in post-meiotic cells, its function during spermiogenesis remained obscure.
View Article and Find Full Text PDFmacroH2A is an H2A variant with a highly unusual structural organization. It has a C-terminal domain connected to the N-terminal histone domain by a linker. Crystallographic and biochemical studies show that changes in the L1 loop in the histone fold region of macroH2A impact the structure and potentially the function of nucleosomes.
View Article and Find Full Text PDFHIV-1 transactivator Tat uses cellular acetylation signalling by targeting several cellular histone acetyltransferases (HAT) to optimize its various functions. Although Tip60 was the first HAT identified to interact with Tat, the biological significance of this interaction has remained obscure. We had previously shown that Tat represses Tip60 HAT activity.
View Article and Find Full Text PDFHistone variants functionally differentiate individual nucleosomes and, hence, act as key regulators of chromatin structure and function. Large-scale proteomic projects are now valuable sources of histone-variant discovery, showing, in particular, that somatic mammalian cells express a larger panel of histone H3 variants than previously thought, including testis-specific variants and as yet uncharacterized species. These data also suggest a tight relationship between the complexity of histone-variant expression and physiopathological states of the cells.
View Article and Find Full Text PDFThe transformation of the somatic chromatin into a unique and highly compact structure occurring during the post-meiotic phase of spermatogenesis is one of the most dramatic known processes of chromatin remodeling. Paradoxically, no information is available on the mechanisms controlling this specific reorganization of the haploid cell genome. The only existing hints suggest a role for histone variants, as well as for stage-specific post-translational histone modifications,before and during the incorporation of testis-specific basic nuclear proteins.
View Article and Find Full Text PDFA number of viral proteins have the property to penetrate into the cells when present in the extra-cellular compartment. Here, we report that the Epstein-Barr virus (EBV) transcriptional activator EB1/Zta, which is responsible for the activation of the EBV lytic replication, binds to lymphoid cells surface, is efficiently translocated and accumulates in the nucleus. The internalization of EB1/Zta is energy-dependent and shares common features with endocytosis.
View Article and Find Full Text PDFIt is now becoming apparent that cross-talk between two protein lysine modifications, acetylation and ubiquitination, is a critical regulatory mechanism controlling vital cellular functions. The most apparent effect is the inhibition of proteasome-mediated protein degradation by lysine acetylation. Analysis of the underlying mechanisms, however, shows that, besides a direct competition between the two lysine modifications, more complex and indirect processes also connect these two signalling pathways.
View Article and Find Full Text PDFThe setting of male-specific epigenetic information is a complex process, which involves a major global re-organisation, as well as localized changes of the nucleus structure during the pre-meiotic, meiotic and post-meiotic stages of the male germ cell differentiation. Although it has long been known that DNA methylation in targeted regions of the genome is associated with male-specific genomic imprinting, or that most core histones are hyperacetylated and then replaced by sperm-specific proteins during the post-meiotic condensation of the nucleus, many questions remain unanswered. How these changes interact, how they affect the epigenetic information and how the paternal epigenetic marks contribute to the future genome are indeed major issues remaining to be explored.
View Article and Find Full Text PDFOne of the most dramatic chromatin remodelling processes takes place during mammalian spermatogenesis. Indeed, during the postmeiotic maturation of male haploid germ cells, or spermiogenesis, histones are replaced by small basic proteins, which in mammals are transition proteins and protamines. However, nothing is known of the mechanisms controlling the process of histone replacement.
View Article and Find Full Text PDFThe histone acetyl transferase Tip60 (HTATIP) shares many properties with the tumor suppressor p53 (TP53). Both proteins are involved in the cellular response to DNA damage, are subjected to proteasomal digestion following Mdm2-mediated ubiquitination, and accumulate after UV irradiation. We found here that knock-down of Tip60 affects the p53-dependent response following actinomycin D treatment, most likely because it inhibits p21 (CDKN1A) accumulation.
View Article and Find Full Text PDFThis study describes the physical and functional interactions between ICP0 of herpes simplex virus type 1 and class II histone deacetylases (HDACs) 4, 5, and 7. Class II HDACs are mainly known for their participation in the control of cell differentiation through the regulation of the activity of the transcription factor MEF2 (myocyte enhancer factor 2), implicated in muscle development and neuronal survival. Immunofluorescence experiments performed on transfected cells showed that ICP0 colocalizes with and reorganizes the nuclear distribution of ectopically expressed class I and II HDACs.
View Article and Find Full Text PDFCdyl (chromodomain-Y-like) is a chromodomain-containing protein that is predominantly expressed during mouse spermiogenesis. In its carboxy-terminal portion, there is a domain with homology to the coenzyme A (CoA) pocket of the enoyl-CoA hydratase/isomerase, which is shown here to be able to bind CoA and histone deacetylases (HDACs). It also efficiently represses transcription.
View Article and Find Full Text PDFThe association between histone acetylation and replacement observed during spermatogenesis prompted us to consider the testis as a source for potential factors capable of remodelling acetylated chromatin. A systematic search of data banks for open reading frames encoding testis-specific bromodomain-containing proteins focused our attention on BRDT, a testis-specific protein of unknown function containing two bromodomains. BRDT specifically binds hyperacetylated histone H4 tail depending on the integrity of both bromodomains.
View Article and Find Full Text PDFMicrotubules are cylindrical cytoskeletal structures found in almost all eukaryotic cell types which are involved in a great variety of cellular processes. Reversible acetylation on the epsilon-amino group of alpha-tubulin Lys40 marks stabilized microtubule structures and may contribute to regulating microtubule dynamics. Yet, the enzymes catalysing this acetylation/deacetylation have remained unidentified until recently.
View Article and Find Full Text PDFIt is becoming clear that the post-translational modification of histone and non-histone proteins by acetylation is part of an important cellular signaling process controlling a wide variety of functions in both the nucleus and the cytoplasm. Recent investigations designate this signaling pathway as one of the primary targets of viral proteins after infection. Indeed, specific viral proteins have acquired the capacity to interact with cellular acetyltransferases (HATs) and deacetylases (HDACs) and consequently to disrupt normal acetylation signaling pathways, thereby affecting viral and cellular gene expression.
View Article and Find Full Text PDFHere we show that the phosphorylation of histone acetyltransferase Tip60, a target of human immunodeficiency virus, type 1-encoded transactivator Tat, plays a crucial role in the control of its catalytic activity. Baculovirus-based expression and purification of Tip60 combined with mass spectrometry allowed the identification of serines 86 and 90 as two major sites of phosphorylation in vivo. The phosphorylation of Tip60 was found to modulate its histone acetyltransferase activity.
View Article and Find Full Text PDF