HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites.
View Article and Find Full Text PDFHIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites.
View Article and Find Full Text PDFThe endosomal sorting complex required for transport (ESCRT) is a highly conserved protein machinery that drives a divers set of physiological and pathological membrane remodeling processes. However, the structural basis of ESCRT-III polymers stabilizing, constricting and cleaving negatively curved membranes is yet unknown. Here we present cryo-EM structures of membrane-coated CHMP2A-CHMP3 filaments from Homo sapiens of two different diameters at 3.
View Article and Find Full Text PDFMalformations of cortical development (MCDs) are a group of severe brain malformations associated with intellectual disability and refractory childhood epilepsy. Human missense heterozygous mutations in the 9 α-tubulin and 10 β-tubulin isoforms forming the heterodimers that assemble into microtubules (MTs) were found to cause MCDs. However, how a single mutated residue in a given tubulin isoform can perturb the entire microtubule population in a neuronal cell remains a crucial question.
View Article and Find Full Text PDFMalformations of the human cerebral cortex can be caused by mutations in tubulins that associate to compose microtubules. Cerebral cortical folding relies on neuronal migration and on progenitor proliferation partly dictated by microtubule-dependent mitotic spindle positioning. A single amino acid change, F265L, in the conserved TUBB2B β-tubulin gene has been identified in patients with abnormal cortex formation.
View Article and Find Full Text PDFIn mammals, the C-terminal tyrosine residue of α-tubulin is subjected to removal/re-addition cycles resulting in tyrosinated microtubules and detyrosinated Glu-microtubules. CLIP170 and its yeast ortholog (Bik1) interact weakly with Glu-microtubules. Recently, we described a Microtubule- Rho1- and Bik1-dependent mechanism involved in Snc1 routing.
View Article and Find Full Text PDFThe diversity of microtubule functions is dependent on the status of tubulin C-termini. To address the physiological role of the C-terminal aromatic residue of α-tubulin, a tub1-Glu yeast strain expressing an α-tubulin devoid of its C-terminal amino acid was used to perform a genome-wide-lethality screen. The identified synthetic lethal genes suggested links with endocytosis and related processes.
View Article and Find Full Text PDFThe genetic causes of malformations of cortical development (MCD) remain largely unknown. Here we report the discovery of multiple pathogenic missense mutations in TUBG1, DYNC1H1 and KIF2A, as well as a single germline mosaic mutation in KIF5C, in subjects with MCD. We found a frequent recurrence of mutations in DYNC1H1, implying that this gene is a major locus for unexplained MCD.
View Article and Find Full Text PDFPtdIns3P is recognized as an important player in the control of the endocytotic pathway and in autophagy. Recent data also suggest that PtdIns3P contributes to molecular mechanisms taking place at the plasma membrane and at the midbody during cytokinesis. This lipid is present in low amounts in mammalian cells and remains difficult to quantify either by traditional techniques based on radiolabelling followed by HPLC to separate the different phosphatidylinositol monophosphates, or by high-sensitive liquid chromatography coupled to MS, which is still under development.
View Article and Find Full Text PDFBik1p is the budding yeast counterpart of the CLIP-170 family of microtubule plus-end tracking proteins, which are required for dynein localization at plus ends and dynein-dependent spindle positioning. CLIP-170 proteins make up a CAP-Gly microtubule-binding domain, which sustains their microtubule plus-end tracking behaviour. However, in yeast, Bik1p travels towards plus ends as a cargo of the plus-end-directed kinesin Kip2p.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2004
CadA, the P1-type ATPase involved in Listeria monocytogenes resistance to Cd(2+), was expressed in Saccharomyces cerevisiae and did just the opposite to what was expected, as it strikingly decreased the Cd(2+) tolerance of these cells. Yeast cells expressing the non-functional mutant Asp(398)Ala could grow on selective medium containing up to 100 microM Cd(2+), whereas those expressing the functional protein could not grow in the presence of 1 microM Cd(2+). The CadA-GFP fusion protein was localized in the endoplasmic reticulum membrane, suggesting that yeast hyper-sensitivity was due to Cd(2+) accumulation in the reticulum lumen.
View Article and Find Full Text PDF