Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the SARS-CoV-2 betacoronavirus and has taken over 761,426 American lives as of the date of publication and will likely result in long-term, if not permanent, tissue damage for countless patients. COVID-19 presents with diverse and multisystemic pathologic processes, including a hyperinflammatory response, acute respiratory distress syndrome (ARDS), vascular injury, microangiopathy, tissue fibrosis, angiogenesis, and widespread thrombosis across multiple organs, including the lungs, heart, kidney, liver, and brain. C-X-C chemokines contribute to these pathologies by attracting inflammatory mediators, the disruption of endothelial cell integrity and function, and the initiation and propagation of the cytokine storm.
View Article and Find Full Text PDFBackground: Glaucoma filtration surgery (GFS) is limited by subconjunctival, episcleral and scleral fibrosis sealing the trabeculectomy and scarring the filtering bleb. Mitomycin-C (MMC) is commonly applied intraoperatively to the subconjunctival and/or intrascleral space to reduce scarring and promotes GFS success but is associated with postoperative scleral melting and bleb leaks. IP-10 peptide (IP-10p), an ELR-negative CXC chemokine mimetic and inhibitor of fibroblast function, may be an alternative or adjunct to current postoperative GFS treatments.
View Article and Find Full Text PDFPurpose: Mitomycin C is routinely applied during trabeculectomy surgeries to enhance bleb survival after glaucoma filtration surgery. The current approach involves placing cellulose sponges soaked in mitomycin C at a standard concentration onto bare sclera for a predetermined duration, which varies among surgeons. The purpose of this study was to compare the effects of sponge-applied versus intra-Tenon injection of mitomycin C during modified trabeculectomy.
View Article and Find Full Text PDFFibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation and rate of progression. The development of effective treatments is limited by these variabilities.
View Article and Find Full Text PDFA polarized macrophage response into inflammatory (M1) or regenerative/anti-inflammatory (M2) phenotypes is critical in host response to multiple intracellular bacterial infections. Ehrlichia is an obligate Gram-negative intracellular bacterium that causes human monocytic ehrlichiosis (HME): a febrile illness that may progress to fatal sepsis with multi-organ failure. We have shown that liver injury and Ehrlichia-induced sepsis occur due to dysregulated inflammation.
View Article and Find Full Text PDFProgression of systemic scleroderma (SSc), a chronic connective tissue disease that causes a fibrotic phenotype, is highly heterogeneous amongst patients and difficult to accurately diagnose. To meet this clinical need, we developed a novel three-layer classification model, which analyses gene expression profiles from SSc skin biopsies to diagnose SSc severity. Two SSc skin biopsy microarray datasets were obtained from Gene Expression Omnibus.
View Article and Find Full Text PDFTissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG) is not a reliable option.
View Article and Find Full Text PDFThe muscle-specific ubiquitin ligase atrogin-1 (MAFbx) has been identified as a critical regulator of pathologic and physiological cardiac hypertrophy; it regulates these processes by ubiquitinating transcription factors [nuclear factor of activated T-cells and forkhead box O (FoxO) 1/3]. However, the role of atrogin-1 in regulating transcription factors in aging has not previously been described. Atrogin-1 cardiomyocyte-specific transgenic (Tg) adult mice (α-major histocompatibility complex promoter driven) have normal cardiac function and size.
View Article and Find Full Text PDFBackground: Transplantation of mesenchymal stem cells (MSC) has been proposed to improve wound healing. However, as these cells only transiently survive in the implantation site, the mechanisms underlying this beneficial healing response are associated with restorative paracrine effects of MSC matricellular factors on resident stromal cells. However, this requires that the recipient has a robust reservoir of viable cells.
View Article and Find Full Text PDFBackground: Infection is the most common complication in burn-injured patients and is believed to contribute to the hypertrophic scarring frequently observed in such injury. Pseudomonas aeruginosa is a common pathogen in burn wound infection. We examined the effect of local probiotic therapy with Lactobacillus plantarum on the severity of the scarring following burn wounding and infection with P.
View Article and Find Full Text PDFThe present study tests the hypothesis that transient, early-stage shifts in macrophage polarization at the tissue-implant interface from a pro-inflammatory (M1) to an anti-inflammatory/regulatory (M2) phenotype mitigates the host inflammatory reaction against a non-degradable polypropylene mesh material and improves implant integration downstream. To address this hypothesis, a nanometer-thickness coating capable of releasing IL-4 (an M2 polarizing cytokine) from an implant surface at early stages of the host response has been developed. Results of XPS, ATR-FTIR and Alcian blue staining confirmed the presence of a uniform, conformal coating consisting of chitosan and dermatan sulfate.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) remain of great interest in regenerative medicine because of their ability to home to sites of injury, differentiate into a variety of relevant lineages, and modulate inflammation and angiogenesis through paracrine activity. Many studies have found that despite the promise of MSC therapy, cell survival upon implant is highly limited and greatly reduces the therapeutic utility of MSCs. The matrikine tenascin C, a protein expressed often at the edges of a healing wound, contains unique EGF-like repeats that are able to bind EGFR at low affinities and induce downstream prosurvival signaling without inducing receptor internalization.
View Article and Find Full Text PDFThe Bcl2-associated anthanogene (BAG) 3 protein is a member of the BAG family of cochaperones, which supports multiple critical cellular processes, including critical structural roles supporting desmin and interactions with heat shock proteins and ubiquitin ligases intimately involved in protein quality control. The missense mutation P209L in exon 3 results in a primarily cardiac phenotype leading to skeletal muscle and cardiac complications. At least 10 other Bag3 mutations have been reported, nine resulting in a dilated cardiomyopathy for which no specific therapy is available.
View Article and Find Full Text PDFPericytes have generally been considered in the context of stabilizing vessels, ensuring the blood barriers, and regulating the flow through capillaries. However, new reports suggest that pericytes may function at critical times to either drive healing with minimal scarring or, perversely, contribute to fibrosis and ongoing scar formation. Beneficially, pericytes probably drive much of the vascular involution that occurs during the transition from the regenerative to the resolution phases of healing.
View Article and Find Full Text PDFThe process of repair of wounded skin involves intricate orchestration not only between the epidermal and dermal compartments but also between the resident and immigrant cells and the local microenvironment. Only now are we beginning to appreciate the complex roles played by the matrix in directing the outcome of the repair processes, and how this impacts the signals from the various cells. Recent findings speak of dynamic and reciprocal interactions that occurs among the matrix, growth factors, and cells that underlies this integrated process.
View Article and Find Full Text PDFBackground: In diabetes mellitus the morbidity and mortality of cardiovascular disease is increased and represents an important independent mechanism by which heart disease is exacerbated. The pathogenesis of diabetic cardiomyopathy involves the enhanced activation of PPAR transcription factors, including PPARα, and to a lesser degree PPARβ and PPARγ1. How these transcription factors are regulated in the heart is largely unknown.
View Article and Find Full Text PDFBackground: The pathogenesis of diabetic cardiomyopathy (DCM) involves the enhanced activation of peroxisome proliferator activating receptor (PPAR) transcription factors, including the most prominent isoform in the heart, PPARα. In cancer cells and adipocytes, post-translational modification of PPARs have been identified, including ligand-dependent degradation of PPARs by specific ubiquitin ligases. However, the regulation of PPARs in cardiomyocytes and heart have not previously been identified.
View Article and Find Full Text PDFThe cell-permeant peptide inhibitor of MAPKAP kinase 2 (MK2), MMI-0100, inhibits MK2 and downstream fibrosis and inflammation. Recent studies have demonstrated that MMI-0100 reduces intimal hyperplasia in a mouse vein graft model, pulmonary fibrosis in a murine bleomycin-induced model and development of adhesions in conjunction with abdominal surgery. MK2 is critical to the pathogenesis of ischemic heart injury as MK2(-/-) mice are resistant to ischemic remodeling.
View Article and Find Full Text PDFBirth Defects Res C Embryo Today
December 2012
The adverse physiological and psychological effects of scars formation after healing of wounds are broad and a major medical problem for patients. In utero, fetal wounds heal in a regenerative manner, though the mechanisms are unknown. Differences in fetal scarless regeneration and adult repair can provide key insight into reduction of scarring therapy.
View Article and Find Full Text PDFMultipotential stromal cells/mesenchymal stem cells (MSCs) are attractive candidates for regenerative therapy due to the ability of these cells to differentiate and positively influence neighboring cells. However, on implantation for wound reconstruction, these cells are lost as they are challenged by nonspecific inflammation signals generated in the wound environment and in response to any implanted foreign body. We have previously shown that sustained and surface-restricted epidermal growth factor receptor (EGFR) signaling by a tethered form of its prototypal ligand EGF enhances survival of MSC in the presence of death cytokines such as FasL, serum deprivation, and low oxygen in vitro.
View Article and Find Full Text PDFIn skin, the regeneration of the ontogenically distinct mesenchymal and epithelial compartments must proceed in a coordinated manner orchestrated by extracellular signaling networks. We have recently found that the switch from regeneration to remodeling during repair is modulated by chemokines that bind CXCR3 receptor. If this signaling is disrupted wounds continue to be active, resulting in a chronic hypercellular and hypertrophic state characterized by an immature matrix composition.
View Article and Find Full Text PDFRepair of wounds usually results in restoration of organ function, even if suboptimal. However, in a minority of situations, the healing process leads to significant scarring that hampers homeostasis and leaves the tissue compromised. This scar is characterized by an excess of matrix deposition that remains poorly organized and weakened.
View Article and Find Full Text PDFCXC chemokine receptor 3 (CXCR3) signaling promotes keratinocyte migration while terminating fibroblast and endothelial cell immigration into wounds; this signaling also directs epidermal and matrix maturation. Herein, we investigated the long-term effects of failure to activate the "stop-healing" CXCR3 axis. Full-thickness excisional wounds were created on CXCR3 knockout((-/-)) or wild-type mice and examined at up to 180 days after wounding.
View Article and Find Full Text PDFThe signals that prune the exuberant vascular growth of tissue repair are still ill defined. We demonstrate that activation of CXC chemokine receptor 3 (CXCR3) mediates the regression of newly formed blood vessels. We present evidence that CXCR3 is expressed on newly formed vessels in vivo and in vitro.
View Article and Find Full Text PDFWound healing is a complex, orchestrated series of biological events that is controlled by extracellular components that communicate between cell types to re-establish lost tissue. We have found that signaling by ELR-negative CXC chemokines through their common CXCR3 receptor is critical for dermal maturation during the resolving phase. In addition there needs to be complete maturation of the epidermis and regeneration of a delineating basement membrane for proper functioning.
View Article and Find Full Text PDF