The environmental dynamics of emerging pollutants were profoundly influenced by global climate change, attracting widespread attention to this complex interaction. However, single studies or reviews were insufficient to grasp, clarify, and predict the evolutionary characteristics and coupling patterns of emerging pollutants under global climate change. Here, 2389 research articles collected from the Web of Science Core Collection database for the period 2000-2023 were analyzed using systematic bibliometric visual analysis software.
View Article and Find Full Text PDFPolystyrene microplastics (PS) and dibutyl phthalate (DBP) are emerging pollutants widely coexisting in agroecosystems. However, the efficacies of PS as carriers for DBP and their interactive mechanisms on crop safety remain scarce. Here, this study investigated the combined exposure effects and the interacting mechanisms of PS laden with DBP on choy sum (Brassica parachinensis L.
View Article and Find Full Text PDFAcute oral toxicity is currently not available for most polycyclic aromatic hydrocarbons (PAHs), especially their derivatives, because it is cost-prohibitive to experimentally determine all of them. Here, quantitative structure-activity relationship (QSAR) models using machine learning (ML) for predicting the toxicity of PAH derivatives were developed, based on oral toxicity data points of 788 individual substances of rats. Both the individual ML algorithm gradient boosting regression trees (GBRT) and the stacking ML algorithm (extreme gradient boosting + GBRT + random forest regression) provided the best prediction results with satisfactory determination coefficients for both cross-validation and the test set.
View Article and Find Full Text PDFSimultaneous biodegradation of multiple micropollutantslike polycyclic aromatic hydrocarbons (PAHs) and phthalates (PAEs) by microbial consortia remain unclear. Here, four distinct bacterial consortia capable of degrading PAHs and PAEs were domesticated from sludge and its composts. PAH-degrading consortium HS and PAE-degrading consortium EC2 displayed the highest degradation efficiencies for PAHs (37 %-99 %) and PAEs (98 %-99 %), respectively, being significantly higher than those of individual member strains.
View Article and Find Full Text PDFDi-n-butyl phthalate (DBP) is one of the important phthalates detected commonly in soils and crops, posing serious threat to human health. Pseudochrobactrum sp. XF203 (XF203), a new strain related with DBP biodegradation, was first identified from a natural habitat lacking human disturbance.
View Article and Find Full Text PDFXanthates, common mining flotation reagents, strongly bind thiophilic metals such as copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) and consequentially change their bioavailability and mobility upon their discharge into the environment. However, accurate quantification of the metal-xanthate complexes has remained elusive. This study develops a novel and robust method that realizes the accurate quantification of the metal-xanthate complexes resulted from single and multiple reactions of three typical xanthates (ethyl, isopropyl, and butyl xanthates) and four thiophilic metals (Cu, Pb, Cd, and Zn) in water samples.
View Article and Find Full Text PDFSelecting and cultivating low-accumulating crop varieties (LACVs) is the most effective strategy for the safe utilization of di-(2-ethylhexyl) phthalate (DEHP)-contaminated soils, promoting cleaner agricultural production. However, the adsorption-absorption-translocation mechanisms of DEHP along the root-shoot axis remains a formidable challenge to be solved, especially for the research and application of LACV, which are rarely reported. Here, systematic analyses of the root surface ad/desorption, root apexes longitudinal allocation, uptake and translocation pathway of DEHP in LACV were investigated compared with those in a high-accumulating crop variety (HACV) in terms of the root-shoot axis.
View Article and Find Full Text PDFMicrocystins (MCs) have a significant influence on aquatic ecosystems, but little is known about their terrestrial fate and impact. Here, we investigated the fate of two MCs (MC-LR and MC-RR) in the soil-earthworm system, with consideration of their congener-specific impact on earthworm health, soil bacteria, and soil metabolome. Although MCs had little acute lethal effect on earthworms, they caused obvious growth inhibition and setae rupture.
View Article and Find Full Text PDFIron complex regulated electrochemical reaction was triggered for revealing the reaction mechanism, degradation pathway, and applied potential of perfluorooctanoic acid (PFOA). The increased PMS concentrations, electrode spacing, and current density significantly enhanced PFOA elimination, with current density exhibiting a relatively strong interdependency to PFOA complete mineralization. The synergy between PMS and electrochemical reactions greatly accelerated PFOA decomposition by promoting the generation of key reaction sites, such as those for PMS activation and electrochemical processes, under various conditions.
View Article and Find Full Text PDFDi-n-butyl phthalate (DBP) is one of the most extensively used phthalic acid esters (PAEs) and is considered to be an emerging, globally concerning pollutant. The genus Streptomyces holds promise as a degrader of various organic pollutants, but PAE biodegradation mechanisms by Streptomyces species remain unsolved. In this study, a novel PAE-degrading Streptomyces sp.
View Article and Find Full Text PDFContamination of small-sized plastics is recognized as a factor of global change. Nanoplastics (NPs) can readily enter organisms and pose significant ecological risks. Arbuscular mycorrhizal (AM) fungi are the most ubiquitous and impactful plant symbiotic fungi, regulating essential ecological functions.
View Article and Find Full Text PDFEco Environ Health
December 2023
Perfluoroalkyl acids (PFAAs) are considered forever chemicals, gaining increasing attention for their hazardous impacts. However, the ecological effects of PFAAs remain unclear. Environmental DNA (eDNA), as the environmental gene pool, is often collected for evaluating the ecotoxicological effects of pollutants.
View Article and Find Full Text PDFPhytoremediation largely involves microbial degradation of organic pollutants in rhizosphere for removing organic pollutants like polycyclic aromatic hydrocarbons, phthalates and polychlorinated biphenyls. Microbial community in rhizosphere experiences complex processes of response-adaptation-feedback up on exposure to organic pollutants. This review summarizes recent research on the response and adaptation of rhizosphere microbial community to the stress of organic pollutants, and discusses the enrichment of the pollutant-degrading microbial community and genes in the rhizosphere for promoting bioremediation.
View Article and Find Full Text PDFCiprofloxacin (CIP) is frequently detected in agricultural soils and can be accumulated by crops, causing phytotoxicities and food safety concerns. However, the molecular basis of its phytotoxicity and phytoaccumulation is hardly known. Here, we analyzed physiological and molecular responses of choysum (Brassica parachinensis) to CIP stress by comparing low CIP accumulation variety (LAV) and high accumulation variety (HAV).
View Article and Find Full Text PDFMicrobial degradation has been confirmed as effective and environmentally friendly approach to remediate phthalates from the environment, and hydrolase is an effective element for contaminant degradation. In the present study, a novel dibutyl phthalate (DBP)-hydrolyzing carboxylesterase (named PS06828) from Pseudomonas sp. PS1 was heterogeneously expressed in E.
View Article and Find Full Text PDFAniline aerofloat (AAF) is a refractory organic pollutant in floatation wastewater. Little information is currently available on its biodegradation. In this study, a novel AAF-degrading strain named Burkholderia sp.
View Article and Find Full Text PDFMachine learning (ML) models were developed for understanding the root uptake of per- and polyfluoroalkyl substances (PFASs) under complex PFAS-crop-soil interactions. Three hundred root concentration factor (RCF) data points and 26 features associated with PFAS structures, crop properties, soil properties, and cultivation conditions were used for the model development. The optimal ML model, obtained by stratified sampling, Bayesian optimization, and 5-fold cross-validation, was explained by permutation feature importance, individual conditional expectation plot, and 3D interaction plot.
View Article and Find Full Text PDFMicroplastics (MPs) usually coexist with heavy metals (HMs) in soil. MPs can influence HMs mobility and bioavailability, but the underlying mechanisms remain largely unexplored. Here, polyethylene and polypropylene MPs were selected to investigate their effects and mechanisms of sorption-desorption, bioaccessibility and bioavailability of cadmium (Cd) in paddy soil.
View Article and Find Full Text PDF