Publications by authors named "Cayuso J"

The hepatopancreatic ductal (HPD) system connects the intrahepatic and intrapancreatic ducts to the intestine and ensures the afferent transport of the bile and pancreatic enzymes. Yet the molecular and cellular mechanisms controlling their differentiation and morphogenesis into a functional ductal system are poorly understood. Here, we characterize HPD system morphogenesis by high-resolution microscopy in zebrafish.

View Article and Find Full Text PDF

The segregation of cells with distinct regional identity underlies formation of a sharp border, which in some tissues serves to organise a boundary signaling centre. It is unclear whether or how border sharpness is coordinated with induction of boundary-specific gene expression. We show that forward signaling of EphA4 is required for border sharpening and induction of boundary cells in the zebrafish hindbrain, which we find both require kinase-dependent signaling, with a lesser input of PDZ domain-dependent signaling.

View Article and Find Full Text PDF

The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1.

View Article and Find Full Text PDF

Positioning organs in the body often requires the movement of multiple tissues, yet the molecular and cellular mechanisms coordinating such movements are largely unknown. Here, we show that bidirectional signaling between EphrinB1 and EphB3b coordinates the movements of the hepatic endoderm and adjacent lateral plate mesoderm (LPM), resulting in asymmetric positioning of the zebrafish liver. EphrinB1 in hepatoblasts regulates directional migration and mediates interactions with the LPM, where EphB3b controls polarity and movement of the LPM.

View Article and Find Full Text PDF

The formation of sharp borders, across which cell intermingling is restricted, has a crucial role in the establishment and maintenance of organized tissues. Signaling of Eph receptors and ephrins underlies formation of a number of boundaries between and within tissues during vertebrate development. Eph-ephrin signaling can regulate several types of cell response-adhesion, repulsion and tension-that can in principle underlie the segregation of cells and formation of sharp borders.

View Article and Find Full Text PDF

In the developing spinal cord, motor neurons (MNs) and oligodendrocytes arise sequentially from a common pool of progenitors. However, the genetic network responsible for this neurogenesis to gliogenesis switch is largely unknown. A transcriptome analysis identified the Notch ligand Jagged2 (JAG2) as a Sonic hedgehog-regulated factor transiently expressed in MN progenitors (pMNs).

View Article and Find Full Text PDF

Sonic hedgehog signalling is essential for the embryonic development of many tissues including the central nervous system, where it controls the pattern of cellular differentiation. A genome-wide screen of neural progenitor cells to evaluate the Shh signalling-regulated transcriptome identified the forkhead transcription factor Foxj1. In both chick and mouse Foxj1 is expressed in the ventral midline of the neural tube in cells that make up the floor plate.

View Article and Find Full Text PDF

The secreted ligand Sonic Hedgehog (Shh) organizes the pattern of cellular differentiation in the ventral neural tube. For the five neuronal subtypes, increasing levels and durations of Shh signaling direct progenitors to progressively more ventral identities. Here we demonstrate that this mode of action is not applicable to the generation of the most ventral cell type, the nonneuronal floor plate (FP).

View Article and Find Full Text PDF

Dorsoventral patterning of the vertebrate nervous system is achieved by the combined activity of morphogenetic signals secreted from dorsal and ventral signalling centres. The Shh/Gli pathway plays a major role in patterning the ventral neural tube; however, the molecular mechanisms that limit target gene responses to specific progenitor domains remain unclear. Here, we show that Wnt1/Wnt3a, by signalling through the canonical beta-catenin/Tcf pathway, control expression of dorsal genes and suppression of the ventral programme, and that this role in DV patterning depends on Gli activity.

View Article and Find Full Text PDF

During CNS development, the proliferation of progenitors must be coordinated with the pattern of neuronal subtype generation. In the ventral neural tube, Sonic hedgehog acts as a long range morphogen to organise the pattern of cell differentiation by controlling the activity of Gli transcription factors. Here, we provide evidence that the same pathway also acts directly at long range to promote the proliferation and survival of progenitor cells.

View Article and Find Full Text PDF

The entire vertebrate nervous system develops from a simple epithelial sheet, the neural plate which, along development, acquires the large number and wide variety of neuronal cell types required for the construction of a functional mature nervous system. These include processes of growth and pattern formation of the neural tube that are achieved through complicated and tightly regulated genetic interactions. Pattern formation, particularly in the vertebrate central nervous system, is one of the best examples of a morphogen-type of function.

View Article and Find Full Text PDF