Introduction: The standard treatment of colorectal liver metastases (CRLM) is surgery with perioperative chemotherapy. A tumor response to systemic therapy confirmed at pathology examination is the strongest predictor of survival, but it cannot be adequately predicted in the preoperative setting. This bi-institutional retrospective study investigates whether CT-based radiomics of CRLM and peritumoral tissue provides a reliable non-invasive estimation of the pathological tumor response to chemotherapy.
View Article and Find Full Text PDFRadiopharmaceutical therapy (RPT) is an emerging prostate cancer treatment that delivers radiation to specific molecules within the tumor microenvironment (TME), causing DNA damage and cell death. Given TME heterogeneity, it's crucial to explore RPT dosimetry and biological impacts at the cellular level. We integrated spatial transcriptomics (ST) with computational modeling to investigate the effects of RPT targeting prostate-specific membrane antigen (PSMA), fibroblast activation protein (FAP), and gastrin-releasing peptide receptor (GRPR) each labelled with beta-emitting lutetium-177 (Lu) and alpha-emitting actinium-225 (Ac).
View Article and Find Full Text PDFPurpose: Radiomics has revolutionized clinical research by enabling objective measurements of imaging-derived biomarkers. However, the true potential of radiomics necessitates a comprehensive understanding of the biological basis of extracted features to serve as a clinical decision support. In this work, we propose an end-to-end framework for the in silico simulation of [F]FLT PET imaging process in Pancreatic Ductal Adenocarcinoma, accounting for the biological characterization of tissues (including perfusion and fibrosis) on tracer delivery.
View Article and Find Full Text PDFThe development of novel, efficient and cost-effective emitters for solid-state lighting devices (SSLDs) is ubiquitous to meet the increasingly demanding needs of advanced lighting technologies. In this context, the emergence of thermally activated delayed fluorescence (TADF) materials has stunned the photonics community. In particular, inorganic TADF material-based compounds can be engineered by chemical modification of the coordinated ligands and the type of metal centre, allowing control of their ultimate photo-/electroluminescence properties, while providing a viable emitter platform for enhancing the efficiency of state-of-the-art organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs).
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
February 2025
Purpose: To assess the influence of long-axial field-of-view (LAFOV) PET/CT systems on radiomics feature reliability, to assess the suitability for short-duration or low-activity acquisitions for textural feature analysis and to investigate the influence of acceptance angle.
Methods: 34 patients were analysed: twelve patients underwent oncological 2-[18F]-FDG PET/CT, fourteen [18F]PSMA-1007 and eight [68Ga]Ga-DOTATOC. Data were obtained using a 106 cm LAFOV system for 10 min.
Background: Recently, radiomics has emerged as a possible image-derived biomarker, predominantly stemming from retrospective analyses. We aimed to prospectively assess the predictive role of [F]FDG-PET radiomics in breast cancer (BC).
Methods: Patients affected by stage I-III BC eligible for neoadjuvant chemotherapy (NAC) staged with [F]FDG-PET/CT were prospectively enrolled.
The radiomic analysis of the tissue surrounding colorectal liver metastases (CRLM) enhances the prediction accuracy of pathology data and survival. We explored the variation of the textural features in the peritumoural tissue as the distance from CRLM increases. We considered patients with hypodense CRLMs >10 mm and high-quality computed tomography (CT).
View Article and Find Full Text PDFStable and efficient green hybrid light-emitting diodes (HLEDs) were fabricated from a highly emissive Mg(II)-tetraphenyl ethylene derivative metal-organic framework embedded in a polystyrene matrix (Mg-TBC MOF@PS). The photoluminescence quantum yield (ϕ) of the material, >80%, remains constant upon polymer embedment. The resulting HLEDs featured high luminous efficiencies of >50 lm W and long lifetimes of >380 h, making them among the most stable MOF-based HLEDs.
View Article and Find Full Text PDFA π-expanded X-type double [5]helicene comprising dihydropyracylene moieties was synthesized from commercially available acenaphthene. X-ray crystallographic analysis revealed the unique highly twisted structure of the compound resulting in the occurrence of two enantiomers which were separated by chiral HPLC, owing to their high conformational stability. The compound shows strongly bathochromically shifted UV/vis absorption and emission bands with small Stokes shift and considerable photoluminescence quantum yield and circular polarized luminescence response.
View Article and Find Full Text PDFMedical imaging represents the primary tool for investigating and monitoring several diseases, including cancer. The advances in quantitative image analysis have developed towards the extraction of biomarkers able to support clinical decisions. To produce robust results, multi-center studies are often set up.
View Article and Find Full Text PDFWhile F-florzolotau tau PET is an emerging biomarker for progressive supranuclear palsy (PSP), its interpretation has been hindered by a lack of consensus on visual reading and potential biases in conventional semi-quantitative analysis. As clinical manifestations and regions of elevated F-florzolotau binding are highly overlapping in PSP and the Parkinsonian type of multiple system atrophy (MSA-P), developing a reliable discriminative classifier for F-florzolotau PET is urgently needed. Herein, we developed a normalization-free deep-learning (NFDL) model for F-florzolotau PET, which achieved significantly higher accuracy for both PSP and MSA-P compared to semi-quantitative classifiers.
View Article and Find Full Text PDFImage texture analysis has for decades represented a promising opportunity for cancer assessment and disease progression evaluation, evolving in a discipline, i.e., radiomics.
View Article and Find Full Text PDFAdvanced imaging and analysis improve prediction of pathology data and outcomes in several tumors, with entropy-based measures being among the most promising biomarkers. However, entropy is often perceived as statistical data lacking clinical significance. We aimed to generate a voxel-by-voxel visual map of local tumor entropy, thus allowing to (1) make entropy explainable and accessible to clinicians; (2) disclose and quantitively characterize any intra-tumoral entropy heterogeneity; (3) evaluate associations between entropy and pathology data.
View Article and Find Full Text PDFAdvanced image analysis, including radiomics, has recently acquired recognition as a source of biomarkers, although there are some technical and methodological challenges to face for its application in the clinic. Among others, proper phenotyping of metastatic or systemic disease where multiple lesions coexist is an issue, since each lesion contributes to characterization of the disease. Therefore, the radiomic profile of each lesion should be modeled into a more complex architecture able to reproduce each "unit" (lesion) as a part of the "entire" (patient).
View Article and Find Full Text PDFBackground: Cystic fibrosis (CF), which is caused by mutations in the CF transmembrane conductance regulator (CFTR), is characterised by chronic bacterial lung infection and inflammation. In CF, monocytes and monocyte-derived macrophages have been shown to display defective phagocytosis and antimicrobial activity against relevant lung pathogens, including . Thus, we addressed the effect of CFTR triple modulator therapy (elexacaftor/tezacaftor/ivacaftor (ETI)) on the activity of CF monocytes against .
View Article and Find Full Text PDFPersonalized medicine is the future of medical practice. In oncology, tumor heterogeneity assessment represents a pivotal step for effective treatment planning and prognosis prediction. Despite new procedures for DNA sequencing and analysis, non-invasive methods for tumor characterization are needed to impact on daily routine.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Finding effective ways to perform cancer sub-typing is currently a trending research topic for therapy opti-mization and personalized medicine. Stemming from genomic field, several algorithms have been proposed. In the context of texture analysis, limited efforts have been attempted, yet imaging information is known to entail useful knowledge for clinical practice.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2022
This work describes the design and synthesis of a π-conjugated telluro[3,2-β][1]-tellurophene-based synthon that, embodying pyridyl and haloaryl chalcogen-bonding acceptors, self-assembles into nanoribbons through chalcogen bonds. The ribbons π-stack in a multi-layered architecture both in single crystals and thin films. Theoretical studies of the electronic states of chalcogen-bonded material showed the presence of a local charge density between Te and N atoms.
View Article and Find Full Text PDFWhite light-emitting electrochemical cells (LECs) comprising only [Cu(N^N)(P^P)] have not been reported yet, as all the attempts toward blue-emitting complexes failed. Multivariate analysis, based on prior-art [Cu(N^N)(P^P)] -based thin-film lighting (>90 papers) and refined with computational calculations, identifies the best blue-emitting [Cu(N^N)(P^P)] design for LECs, that is, N^N: 2-(4-(tert-butyl)phenyl)-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine and P^P: 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, to achieve predicted thin-film emission at 490 nm and device performance of 3.8 cd A @170 cd m .
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
The prediction at baseline of patients at high risk for therapy failure or recurrence would significantly impact on Hodgkin Lymphoma patients treatment, informing clinical practice. Current literature is extensively searching insights in radiomics, a promising framework for high-throughput imaging feature extraction, to derive biomarkers and quantitative prognostic factors from images. However, existing studies are limited by intrinsic radiomic limitations, high dimensionality among others.
View Article and Find Full Text PDFBackground: The role of image-derived biomarkers in recurrent oligometastatic Prostate Cancer (PCa) is unexplored. This paper aimed to evaluate [F]FMCH PET/CT radiomic analysis in patients with recurrent PCa after primary radical therapy. Specifically, we tested intra-patient lesions similarity in oligometastatic and plurimetastatic PCa, comparing the two most used definitions of oligometastatic disease.
View Article and Find Full Text PDFNon-invasive diagnosis of chemotherapy-associated liver injuries (CALI) is still an unmet need. The present study aims to elucidate the contribution of radiomics to the diagnosis of sinusoidal dilatation (SinDil), nodular regenerative hyperplasia (NRH), and non-alcoholic steatohepatitis (NASH). Patients undergoing hepatectomy for colorectal metastases after chemotherapy (January 2018-February 2020) were retrospectively analyzed.
View Article and Find Full Text PDFBackground: According to published data, radiomics features differ between lesions of refractory/relapsing HL patients from those of long-term responders. However, several methodological aspects have not been elucidated yet.
Purpose: The study aimed at setting up a methodological framework in radiomics applications in Hodgkin's lymphoma (HL), especially at (a) developing a novel feature selection approach, (b) evaluating radiomic intra-patient lesions' similarity, and (c) classifying relapsing refractory (R/R) vs non-(R/R) patients.