Publications by authors named "Cavigelli M"

The Lower Chesapeake Bay (LCB) Long-Term Agroecosystem Research (LTAR) Common Experiment (CE) located in Beltsville, MD, focuses on research of concern to producers of the major regional crops, which are corn (Zea mays L.), soybean [Glycine max (L.) Merr.

View Article and Find Full Text PDF

Cover crops reduce nitrate leached, but effects on nitrous oxide (NO) emissions are mixed. Cover crops can reduce NO emissions by reducing levels of mineral nitrogen (N) and surface soil moisture during spring. Cover crops can also increase NO emissions by adding organic substrates, releasing N during decomposition, or increasing summer soil water content.

View Article and Find Full Text PDF

Phosphorus (P) budgets can be useful tools for understanding nutrient cycling and quantifying the effectiveness of nutrient management planning and policies; however, uncertainties in agricultural nutrient budgets are not often quantitatively assessed. The objective of this study was to evaluate uncertainty in P fluxes (fertilizer/manure application, atmospheric deposition, irrigation, crop removal, surface runoff, and leachate) and the propagation of these uncertainties to annual P budgets. Data from 56 cropping systems in the P-FLUX database, which spans diverse rotations and landscapes across the United States and Canada, were evaluated.

View Article and Find Full Text PDF

Efficient use of nitrogen (N) is essential to protect water quality in high-input organic vegetable production systems, but little is known about the long-term effects of organic management on N mass balances. We measured soil N and tabulated N inputs (organic fertilizers, compost, irrigation water, atmospheric deposition, cover crop seed, vegetable transplant plugs and fixation by legume cover crops) and exports in harvested crops (lettuce, broccoli) over eight years to calculate soil surface and soil system N mass balances for the Salinas Organic Cropping Systems study in Salinas, CA. Our objectives were to 1) quantify the long-term effects of compost, cover crop frequency and cover crop type on soil N, cover crop and vegetable crop N uptake, and yield, and 2) tabulate N balances to assess the effects of these factors on N export in harvested crops, soil N storage and potential N loss.

View Article and Find Full Text PDF

Quantifying spatial and temporal fluxes of phosphorus (P) within and among agricultural production systems is critical for sustaining agricultural production while minimizing environmental impacts. To better understand P fluxes in agricultural landscapes, P-FLUX, a detailed and harmonized dataset of P inputs, outputs, and budgets, as well as estimated uncertainties for each P flux and budget, was developed. Data were collected from 24 research sites and 61 production systems through the Long-term Agroecosystem Research (LTAR) network and partner organizations spanning 22 U.

View Article and Find Full Text PDF

Manureshed management seeks to address systemic imbalances in nutrient distributions at scales beyond the farmgate and potentially across county and state boundaries. The U.S.

View Article and Find Full Text PDF

Data presented are on carbon (C) and nitrogen (N) inputs, and changes in soil C and N in eight systems during the first eight years of a tillage-intensive organic vegetable systems study that was focused on romaine lettuce and broccoli production in Salinas Valley on the central coast region of California. The eight systems differed in organic matter inputs from cover crops and urban yard-waste compost. The cover crops included cereal rye, a legume-rye mixture, and a mustard mixture planted at two seeding rates (standard rate 1x versus high rate 3x).

View Article and Find Full Text PDF

Land application of biochar reportedly provides many benefits, including reduced risk of nutrient transport, greenhouse gas (GHG) emission mitigation, and increased soil C storage, but additional field validation is needed. We evaluated the effectiveness of biochar in controlling the lability of nutrients in agricultural land. This study was designed to evaluate the impacts of biochar co-applied with various N and P sources on GHG fluxes from a subtropical grassland.

View Article and Find Full Text PDF

Despite the numerous benefits of biosolids, concerns over nutrient losses restrict the extent to which biosolids can be beneficially reused. We evaluated the effectiveness of biochar in controlling the lability of nutrients in agricultural land. This study was designed to investigate the potential impacts of co-applying biochar with biosolids or inorganic fertilizer on N and P leaching losses.

View Article and Find Full Text PDF

Maintaining soil organic carbon (SOC) in frequently tilled, intensive organic vegetable production systems is a challenge that is not well understood. Compost and cover crops are often used to add organic matter to the soil in these systems. Compost contributes relatively stabilized carbon (C) while cover crops provide readily degradable (labile) organic matter.

View Article and Find Full Text PDF

Despite glyphosate's wide use for weed control in agriculture, questions remain about the herbicide's effect on soil microbial communities. The existing scientific literature contains conflicting results, from no observable effect of glyphosate to the enrichment of agricultural pathogens such as spp. We conducted a comprehensive field-based study to compare the microbial communities on the roots of plants that received a foliar application of glyphosate to adjacent plants that did not.

View Article and Find Full Text PDF

Agriculture in the United States must respond to escalating demands for productivity and efficiency, as well as pressures to improve its stewardship of natural resources. Growing global population and changing diets, combined with a greater societal awareness of agriculture's role in delivering ecosystem services beyond food, feed, fiber, and energy production, require a comprehensive perspective on where and how US agriculture can be sustainably intensified, that is, made more productive without exacerbating local and off-site environmental concerns. The USDA's Long-Term Agroecosystem Research (LTAR) network is composed of 18 locations distributed across the contiguous United States working together to integrate national and local agricultural priorities and advance the sustainable intensification of US agriculture.

View Article and Find Full Text PDF

The impact of climate change on soil organic C (SOC) stocks in no-till (NT) and conventionally tilled (CT) agricultural systems is poorly understood. The objective of this study was to simulate the impact of projected climate change on SOC to 50-cm soil depth for grain cropping systems in the southern Mid-Atlantic region of the United States. We used SOC and other data from the long-term Farming Systems Project in Beltsville, MD, and CQESTR, a process-based soil C model, to predict the impact of cropping systems and climate (air temperature and precipitation) on SOC for a 40-yr period (2012-2052).

View Article and Find Full Text PDF

We used complementary morphological and DNA metabarcoding approaches to characterize soil nematode communities in three cropping systems, conventional till (CT), no-till (NT) and organic (ORG), from a long-term field experiment. We hypothesized that organic inputs to the ORG system would promote a more abundant nematode community, and that the NT system would show a more structured trophic system (higher Bongers MI) than CT due to decreased soil disturbance. The abundance of Tylenchidae and Cephalobidae both showed positive correlations to soil organic carbon and nitrogen, which were highest in the ORG system.

View Article and Find Full Text PDF

Nitrous oxide (NO) is an important greenhouse gas and a catalyst of stratospheric ozone decay. Agricultural soils are the source of 75% of anthropogenic NO emissions globally. Recently, significant attention has been directed at examining effects of conservation tillage on carbon sequestration in agricultural systems.

View Article and Find Full Text PDF

Variability in meteorological patterns presents significant challenges to crop production consistency and yield stability. Meteorological influences on corn and soybean grain yields were analyzed over an 18-year period at a long-term experiment in Beltsville, Maryland, U.S.

View Article and Find Full Text PDF

Precipitation and irrigation induce pulses of NO emissions in agricultural soils, but the magnitude, duration, and timing of these pulses remain uncertain. This uncertainty makes it difficult to accurately extrapolate emissions from unmeasured time periods between chamber sampling events. Therefore, we developed a modeling protocol to predict NO emissions from data collected daily for 7 d after wetting events.

View Article and Find Full Text PDF

Fungi in the genus Metarhizium are insect pathogens able to function in other niches, including soil and plant rhizosphere habitats. In agroecosystems, cropping and tillage practices influence soil fungal communities with unknown effects on the distribution of Metarhizium, whose presence can reduce populations of crop pests. We report results from a selective media survey of Metarhizium in soils sampled from a long-term experimental farming project in the mid-Atlantic region.

View Article and Find Full Text PDF

To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (Ca, Cs) and decay rates (ka, ks) of active and slow C pools which we compared with total particulate organic matter (POM) and occluded-POM (OPOM). The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays.

View Article and Find Full Text PDF

The basal amounts of metallothionein (MT) and its rates of biosynthesis were compared in resting and proliferating Chang liver (CCl-13) cells. In resting cells the total amounts of the detectable isoforms MT-2 and MT-1e were approx. 1.

View Article and Find Full Text PDF

Trivalent arsenic (As3+) is highly carcinogenic, but devoid of known mutagenic activity. Therefore, it is likely to act as a tumor promoter. To understand the molecular basis for the tumor-promoting activity of As3+, we examined its effect on transcription factor AP-1, whose activity is stimulated by several other tumor promoters.

View Article and Find Full Text PDF

Growth factors induce c-fos transcription by stimulating phosphorylation of transcription factor TCF/Elk-1, which binds to the serum response element (SRE). Under such conditions Elk-1 could be phosphorylated by the mitogen-activated protein kinases (MAPKs) ERK1 and ERK2. However, c-fos transcription and SRE activity are also induced by stimuli, such as UV irradiation and activation of the protein kinase MEKK1, that cause only an insignificant increase in ERK1/2 activity.

View Article and Find Full Text PDF

Induction of phase 2 detoxification enzymes by phenolic antioxidants can account for prevention of tumor initiation but cannot explain why these compounds inhibit tumor promotion. Phase 2 genes are induced through an antioxidant response element (ARE). Although the ARE resembles an AP-1 binding site, we show that the major ARE binding and activating protein is not AP-1.

View Article and Find Full Text PDF