Publications by authors named "Cavan Kalonia"

Investigating the molecular conformations of monoclonal antibodies (mAbs) adsorbed at the solid/liquid interface is crucial for understanding mAb solution stability and advancing the development of mAb-based biosensors. This study examines the pH-dependent conformational plasticity of a human IgG1k mAb, COE-3, at the SiO/water interface under varying pH conditions (pH 5.5 and 9).

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) can undergo structural changes due to interaction with oil-water interfaces during storage. Such changes can lead to aggregation, resulting in a loss of therapeutic efficacy. Therefore, understanding the microscopic mechanism controlling mAb adsorption is crucial to developing strategies that can minimize the impact of interfaces on the therapeutic properties of mAbs.

View Article and Find Full Text PDF

Understanding and predicting protein aggregation represents one of the major challenges in accelerating the pharmaceutical development of protein therapeutics. In addition to maintaining the solution pH, buffers influence both monoclonal antibody (mAb) aggregation in solution and the aggregation mechanisms since the latter depend on the protein charge. Molecular-level insight is necessary to understand the relationship between the buffer-mAb interaction and mAb aggregation.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are active components of therapeutic formulations that interact with the water-vapor interface during manufacturing, storage, and administration. Surface adsorption has been demonstrated to mediate antibody aggregation, which leads to a loss of therapeutic efficacy. Controlling mAb adsorption at interfaces requires a deep understanding of the microscopic processes that lead to adsorption and identification of the protein regions that drive mAb surface activity.

View Article and Find Full Text PDF

The aggregation of therapeutic proteins in solution has attracted significant interest, driving efforts to understand the relationship between microscopic structural changes and protein-protein interactions determining aggregation processes in solution. Additionally, there is substantial interest in being able to predict aggregation based on protein structure as part of molecular developability assessments. Molecular Dynamics provides theoretical tools to complement experimental studies and to interrogate and identify the microscopic mechanisms determining aggregation.

View Article and Find Full Text PDF

Interfacial adsorption of monoclonal antibodies (mAbs) can cause structural deformation and induce undesired aggregation and precipitation. Nonionic surfactants are often added to reduce interfacial adsorption of mAbs which may occur during manufacturing, storage, and/or administration. As mAbs are commonly manufactured into ready-to-use syringes coated with silicone oil to improve lubrication, it is important to understand how an mAb, nonionic surfactant, and silicone oil interact at the oil/water interface.

View Article and Find Full Text PDF

Interfacial adsorption is a molecular process occurring during the production, purification, transport, and storage of antibodies, with a direct impact on their structural stability and subsequent implications on their bioactivities. While the average conformational orientation of an adsorbed protein can be readily determined, its associated structures are more complex to characterize. Neutron reflection has been used in this work to investigate the conformational orientations of the monoclonal antibody COE-3 and its Fab and Fc fragments at the oil/water and air/water interfaces.

View Article and Find Full Text PDF

Liquid-liquid phase separation is a phenomenon within biology whereby proteins can separate into dense and more dilute phases with distinct properties. Three antibodies that undergo liquid-liquid phase separation were characterized in the protein-rich and protein-poor phases. In comparison to the protein-poor phase, the protein-rich phase demonstrates more blue-shift tryptophan emissions and red-shifted amide I absorbances.

View Article and Find Full Text PDF

Histidine, a widely used buffer in monoclonal antibody (mAb) formulations, is known to reduce antibody aggregation. While experimental studies suggest a nonelectrostatic, nonstructural (relating to secondary structure preservation) origin of the phenomenon, the underlying microscopic mechanism behind the histidine action is still unknown. Understanding this mechanism will help evaluate and predict the stabilizing effect of this buffer under different experimental conditions and for different mAbs.

View Article and Find Full Text PDF

We investigated the discoloration of a highly concentrated monoclonal antibody (mAbZ) in sodium acetate (NaAc) and histidine/lysine (His/Lys) buffer after exposure to visible light. The color change of the mAbZ formulation was significantly more intense in NaAc buffer and developed a characteristic absorbance with a λ of ca. 450 nm.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are an important class of biotherapeutics; as of 2020, dozens are commercialized medicines, over a hundred are in clinical trials, and many more are in preclinical developmental stages. Therapeutic mAbs are sequence modified from the wild type IgG isoforms to varying extents and can have different intrinsic structural stability. For chronic treatments in particular, high concentration (≥ 100 mg/mL) aqueous formulations are often preferred for at-home administration with a syringe-based device.

View Article and Find Full Text PDF

Subvisible particle formation, which occurs after the sterile filtration step of the fill/finish process, is a challenge that may occur during the development of biotherapeutics with complex molecular structures. Here, we show that a stainless steel pump head from a rotary piston pump produces more protein aggregates, past the limit of the acceptable quality range for subvisible particle counts, in comparison to a ceramic pump head. The quartz crystal microbalance was used to quantify the primary layer, proteins irreversibly adsorbed at the solid-liquid interface, and the secondary diffuse gel-like layer interacting on top of the primary layer.

View Article and Find Full Text PDF

Polysorbates are used ubiquitously in protein therapeutic drugs to help minimize adsorption to surfaces and aggregation. It has been recognized that polysorbate can itself degrade and in turn result in loss of efficacy of therapeutic proteins. We studied the 2 main pathways of polysorbate 80 (PS80) degradation, enzymatic ester hydrolysis, and oxidation.

View Article and Find Full Text PDF

Light exposure of a monoclonal antibody formulation containing polysorbate 80 (PS80) leads to cis/trans isomerization of monounsaturated and polyunsaturated fatty acids. This cis/trans isomerization was monitored by positive electrospray ionization mass spectrometry of intact PS80 components as well as by negative ion electrospray ionization mass spectrometry analysis of free fatty acids generated via esterase-catalyzed hydrolysis. The light-induced cis/trans isomerization of unsaturated fatty acids in PS80 required the presence of the monoclonal antibody, or, at a minimum (for mechanistic studies), a combination of N-acetyltryptophan amide and glutathione disulfide, suggesting the involvement of thiyl radicals generated by photoinduced electron transfer from Trp to the disulfide.

View Article and Find Full Text PDF

The physical stability of a monoclonal antibody (mAb) solution for injection in a prefilled syringe may in part depend on its behavior at the silicone oil/water interface. Here, the adsorption of a mAb (termed COE-3) and its fragment antigen-binding (Fab) and crystallizable (Fc) at the oil/water interface was measured using neutron reflection. A 1.

View Article and Find Full Text PDF

Passage of specific protein solutions through certain pumps, tubing, and/or filling nozzles can result in the production of unwanted subvisible protein particles (SVPs). In this work, surface-mediated SVP formation was investigated. Specifically, the effects of different solid interface materials, interfacial shear rates, and protein concentrations on SVP formation were measured for the National Institute of Standards and Technology monoclonal antibody (NISTmAb), a reference IgG1 monoclonal antibody (mAb).

View Article and Find Full Text PDF

Non-native protein aggregation is a key degradation pathway of immunoglobulins. In this work, the aggregation kinetics of an immunoglobulin gamma-1 monoclonal antibody (IgG1 mAb) in different solution environments was monitored over a range of incubation temperatures for up to seven months using size exclusion chromatography. Histidine and citrate buffers with/without sodium chloride were employed to modulate the mAb's conformational stability, solubility (in the presence of polyethylene glycol, PEG), and protein-protein interactions as measured by differential scanning calorimetry, PEG precipitation, and static light scattering, respectively.

View Article and Find Full Text PDF

Mechanical agitation of monoclonal antibody (mAb) solutions often leads to protein particle formation. In this study, various formulations of an immunoglobulin G (IgG) 1 mAb were subjected to different controlled interfacial stresses using a Langmuir trough, and protein particles formed at the interface and measured in bulk solution were characterized using atomic force microscopy and flow digital imaging. Results were compared to mAb solutions agitated in glass vials and unstressed controls.

View Article and Find Full Text PDF

Although formation of subvisible particles (1-100 μm) during manufacturing and/or storage is a major stability concern with protein therapeutics, particle numbers are often too low to permit for direct experimental measurement of their protein content (mass). The objective of this work was to develop a novel, accurate, and easy-to-implement method to calculate the mass of subvisible protein particles using particle number, size, and morphology data obtained from microflow imaging (MFI) measurements. The method was evaluated using (1) spherical and nonspherical polystyrene standards and (2) shake and stir-stressed IgG1 mAb solutions.

View Article and Find Full Text PDF

IgG1 mAb solutions were prepared with and without sodium chloride and subjected to different environmental stresses. Formation of aggregates and particles of varying size was monitored by a combination of size-exclusion chromatography, Nanoparticle Tracking Analysis, Micro-flow Imaging (MFI), turbidity, and visual assessments. Stirring and heating induced the highest concentration of particles.

View Article and Find Full Text PDF

This study presents a novel method to visualize protein aggregate and particle formation data to rapidly evaluate the effect of solution and stress conditions on the physical stability of an immunoglobulin G (IgG) 1 monoclonal antibody (mAb). Radar chart arrays were designed so that hundreds of microflow digital imaging (MFI) solution measurements, evaluating different mAb formulations under varying stresses, could be presented in a single figure with minimal loss of data resolution. These MFI radar charts show measured changes in subvisible particle number, size, and morphology distribution as a change in the shape of polygons.

View Article and Find Full Text PDF