Publications by authors named "Cavalcanti-Adam E"

Actin organization is crucial for establishing cell polarity, which influences processes such as directed cell motility and division. Despite its critical role in living organisms, achieving similar polarity in synthetic cells remains challenging. In this study, we employ a bottom-up approach to investigate how molecular crowders facilitate the formation of cortex-like actin networks and how these networks localize and organize based on membrane shape.

View Article and Find Full Text PDF

Isogenic cells respond in a heterogeneous manner to interferon. Using a micropatterning approach combined with high-content imaging and spatial analyses, we characterized how the population context (position of a cell with respect to neighboring cells) of epithelial cells affects their response to interferons. We identified that cells at the edge of cellular colonies are more responsive than cells embedded within colonies.

View Article and Find Full Text PDF

This paper reports on a novel approach for the fabrication of composite multilayered bioink-nanofibers construct. This work achieves this by using a hands-free 3D (bio)printing integrated touch-spinning approach. Additionally, this work investigates the interaction of fibroblasts in different bioinks with the highly aligned touch-spun nanofibers.

View Article and Find Full Text PDF

Simultaneously adding multiple drugs and other chemical reagents to individual droplets at specific time points presents a significant challenge, particularly when dealing with tiny droplets in high-throughput screening applications. In this study, a micropatterned polymer chip is developed as a miniaturized platform for light-induced programmable drug addition in cell-based screening. This chip incorporates a porous superhydrophobic polymer film with atom transfer radical polymerization reactivity, facilitating the efficient grafting of azobenzene methacrylate, a photoconformationally changeable group, onto the hydrophilic regions of polymer matrix at targeted locations and with precise densities.

View Article and Find Full Text PDF
Article Synopsis
  • Spontaneous and induced front-rear polarization of the actin cytoskeleton is essential for cell migration, impacting processes like tissue development, wound healing, and cancer.
  • A new model using giant unilamellar lipid vesicles (GUVs) on micropatterned surfaces was developed to study how shape and adhesion affect this polarization.
  • The study found that different surface patterns caused synthetic cells to deform asymmetrically, which influenced actin filament orientation, providing insight into the mechanics of cytoskeletal organization during cell migration.
View Article and Find Full Text PDF

Collective behavior of cells emerges from coordination of cell-cell-interactions and is important to wound healing, embryonic and tumor development. Depending on cell density and cell-cell interactions, a transition from a migratory, fluid-like unjammed state to a more static and solid-like jammed state or vice versa can occur. Here, we analyze collective migration dynamics of astrocytes and glioblastoma cells using live cell imaging.

View Article and Find Full Text PDF

Cell-extracellular matrix (ECM) adhesion mediated by integrins is a highly regulated process involved in many vital cellular functions such as motility, proliferation and survival. However, the influence of lateral integrin clustering in the coordination of cell front and rear dynamics during cell migration remains unresolved. For this purpose, we describe a novel protocol to fabricate 1D micro-nanopatterned stripes by integrating the block copolymer micelle nanolithography (BCMNL) technique and maskless near UV lithography-based photopatterning.

View Article and Find Full Text PDF

Several factors present in the extracellular environment regulate epithelial cell adhesion and dynamics. Among them, growth factors such as EGF, upon binding to their receptors at the cell surface, get internalized and directly activate the acto-myosin machinery. In this study we present the effects of EGF on the contractility of epithelial cancer cell colonies in confined geometry of different sizes.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created a mouse model with a fluorescent protein fused to clathrin light chain a (Clta) to visualize CME in real time across different tissues using fluorescence and microscopy techniques.
  • * This model allows tracking of endocytosis in living mice and could provide insights into the roles of clathrin light chain isoforms in various health conditions and diseases.
View Article and Find Full Text PDF

Cell-material interactions are regulated by mimicking bone extracellular matrix on the surface of biomaterials. In this regard, reproducing the extracellular conditions that promote integrin and growth factor (GF) signaling is a major goal to trigger bone regeneration. Thus, the use of synthetic osteogenic domains derived from bone morphogenetic protein 2 (BMP-2) is gaining increasing attention, as this strategy is devoid of the clinical risks associated with this molecule.

View Article and Find Full Text PDF

SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus.

View Article and Find Full Text PDF

Traction force microscopy (TFM) is the main method used in mechanobiology to measure cell forces. Commonly this is being used for cells adhering to flat soft substrates that deform under cell traction (2D-TFM). TFM relies on the use of linear elastic materials, such as polydimethylsiloxane (PDMS) or polyacrylamide (PA).

View Article and Find Full Text PDF

Molecular motors are pivotal for intracellular transport as well as cell motility and have great potential to be put to use outside cells. Here, we exploit engineered motor proteins in combination with self-assembly of actin filaments to actively pull lipid nanotubes from giant unilamellar vesicles (GUVs). In particular, actin filaments are bound to the outer GUV membrane and the GUVs are seeded on a heavy meromyosin-coated substrate.

View Article and Find Full Text PDF

The binding strength between epithelial cells is crucial for tissue integrity, signal transduction and collective cell dynamics. However, there is no experimental approach to precisely modulate cell-cell adhesion strength at the cellular and molecular level. Here, we establish DNA nanotechnology as a tool to control cell-cell adhesion of epithelial cells.

View Article and Find Full Text PDF

At the plasma membrane, transmembrane receptors are at the interface between cells and their environment. They allow sensing and transduction of chemical and mechanical extracellular signals. The spatial distribution of receptors and the specific recruitment of receptor subunits to the cell membrane is crucial for the regulation of signaling and cell behavior.

View Article and Find Full Text PDF

Due to its versatility and programmability, DNA nanotechnology has greatly expanded the experimental toolbox for biomedical research. Recent advances allow reliable and efficient functionalization of cellular plasma membranes with a variety of synthetic DNA constructs, ranging from single strands to complex 3D DNA origami. The scope for applications, which probe biophysical parameters or equip cells with novel functions, is rapidly increasing.

View Article and Find Full Text PDF

One of the most fundamental processes of the cell is the uptake of molecules from the surrounding environment. Clathrin-mediated endocytosis (CME) is the best-described uptake pathway and regulates nutrient uptake, protein and lipid turnover at the plasma membrane (PM), cell signaling, cell motility and cell polarity. The main protein in CME is clathrin, which assembles as a triskelion-looking building block made of three clathrin heavy chains and three clathrin light chains.

View Article and Find Full Text PDF

Motility of eukaryotic cells or pathogens within tissues is mediated by the turnover of specific interactions with other cells or with the extracellular matrix. Biophysical characterization of these ligand-receptor adhesions helps to unravel the molecular mechanisms driving migration. Traction force microscopy or optical tweezers are typically used to measure the cellular forces exerted by cells on a substrate.

View Article and Find Full Text PDF

The procedure commonly adopted to characterize cell materials using atomic force microscopy neglects the stress state induced in the cell by the adhesion structures that anchor it to the substrate. In several studies, the cell is considered as made from a single material and no specific information is provided regarding the mechanical properties of subcellular components. Here we present an optimization algorithm to determine separately the material properties of subcellular components of mesenchymal stem cells subjected to nanoindentation measurements.

View Article and Find Full Text PDF

The knowledge of the mechanical properties is the starting point to study the mechanobiology of mesenchymal stem cells and to understand the relationships linking biophysical stimuli to the cellular differentiation process. In experimental biology, Atomic Force Microscopy (AFM) is a common technique for measuring these mechanical properties. In this paper we present an alternative approach for extracting common mechanical parameters, such as the Young's modulus of cell components, starting from AFM nanoindentation measurements conducted on human mesenchymal stem cells.

View Article and Find Full Text PDF

Hydrogels have been widely explored for the delivery of cells in a variety of regenerative medicine applications due to their ability to mimic both the biochemical and physical cues of cell microniches. For bone regeneration, in particular, stiff hydrogels mimicking osteoid stiffness have been utilized due to the fact that stiff substrates favor stem cell osteogenic differentiation. Unlike cell adhesion in two dimensions, three-dimensional hydrogels offer mechanical stimulation but limit the cell spreading and growth due to the dense matrix network.

View Article and Find Full Text PDF

Cells interact with their microenvironment by constantly sensing mechanical and chemical cues converting them into biochemical signals. These processes allow cells to respond and adapt to changes in their environment, and are crucial for most cellular functions. Understanding the mechanism underlying this complex interplay at the cell-matrix interface is of fundamental value to decipher key biochemical and mechanical factors regulating cell fate.

View Article and Find Full Text PDF

Hydrogels with tunable mechanical properties have provided a tremendous opportunity to regulate stem cell differentiation. Hydrogels with osteoid (about 30-40 kPa) or higher stiffness are usually required to induce the osteogenic differentiation of mesenchymal stem cells (MSCs). It is yet difficult to achieve the same differentiation on very soft hydrogels, because of low environmental mechanical stimuli and restricted cellular mechanotransduction.

View Article and Find Full Text PDF

Surface nanopatterning allows for the creation of spatially controlled binding sites for extracellular matrix ligands and the modulation of receptor binding sites. Here we describe the preparation of gold nanopatterned substrates using diblock micellar nanolithography to immobilize integrin ligands at defined spacing and combined with molecular tension sensors to measure molecular forces as function of integrin lateral clustering.

View Article and Find Full Text PDF