Publications by authors named "Cauvi D"

Exosomes, which are small membrane-encapsulated particles derived from all cell types, are emerging as important mechanisms for intercellular communication. In addition, exosomes are currently envisioned as potential carriers for the delivery of drugs to target tissues. The natural population of exosomes is very variable due to the limited amount of cargo components present in these small vesicles.

View Article and Find Full Text PDF

Human Hsp70-escort protein 1 (hHep1) is a cochaperone that assists in the function and stability of mitochondrial HSPA9. Similar to HSPA9, hHep1 is located outside the mitochondria and can interact with liposomes. In this study, we further investigated the structural and thermodynamic behavior of interactions between hHep1 and negatively charged liposomes, as well as interactions with cellular membranes.

View Article and Find Full Text PDF

Mitochondrial quality control is critical for cardiac homeostasis as these organelles are responsible for generating most of the energy needed to sustain contraction. Dysfunctional mitochondria are normally degraded via intracellular degradation pathways that converge on the lysosome. Here, we identified an alternative mechanism to eliminate mitochondria when lysosomal function is compromised.

View Article and Find Full Text PDF

Phospholipids are the major components of cellular membranes and cell-derived vesicles such as exosomes. They are also key components of artificial lipid nanoparticles, allowing the encapsulation and transport of various biological or chemical cargos. Both artificial and natural vesicles could be captured by cells delivering important information that could modulate cellular functions.

View Article and Find Full Text PDF

Mitochondrial quality control is critical for cardiac homeostasis as these organelles are responsible for generating most of the energy needed to sustain contraction. Dysfunctional mitochondria are normally degraded via intracellular degradation pathways that converge on the lysosome. Here, we identified an alternative mechanism to eliminate mitochondria when lysosomal function is compromised.

View Article and Find Full Text PDF
Article Synopsis
  • Appendicoliths are solid materials found in the appendix and were analyzed using various scientific techniques to understand their composition and formation factors.
  • The study identified 48 elements, 32 fatty acids, and 109 proteins in appendicoliths, with calcium, phosphorus, palmitic acid, and stearate being the most prevalent.
  • Findings suggest a link between oxidative stress and appendicolith formation, highlighting the need for more research into how diet and gut bacteria may influence this condition.
View Article and Find Full Text PDF

Background: Older aged adults and those with pre-existing conditions are at highest risk for severe COVID-19 associated outcomes.

Methods: Using a large dataset of genome-wide RNA-seq profiles derived from human dermal fibroblasts (GSE113957) we investigated whether age affects the expression of pattern recognition receptor (PRR) genes and ACE2, the receptor for SARS-CoV-2.

Results: Extremes of age are associated with increased expression of selected PRR genes, ACE2 and four genes that encode proteins that have been shown to interact with SAR2-CoV-2 proteins.

View Article and Find Full Text PDF

Heat shock proteins (HSP) are critical elements for the preservation of cellular homeostasis by participating in an array of biological processes. In addition, HSP play an important role in cellular protection from various environmental stresses. HSP are part of a large family of different molecular mass polypeptides, displaying various expression patterns, subcellular localizations, and diversity functions.

View Article and Find Full Text PDF

The 70 kDa heat shock proteins (Hsp70) are prone to self-assembly under thermal stress conditions, forming supramolecular assemblies (SMA), what may have detrimental consequences for cellular viability. In mitochondria, the cochaperone Hsp70-escort protein 1 (Hep1) maintains mitochondrial Hsp70 (mtHsp70) in a soluble and functional state, contributing to preserving proteostasis. Here we investigated the interaction between human Hep1 (hHep1) and HSPA9 (human mtHsp70) or HSPA1A (Hsp70-1A) in monomeric and thermic SMA states to unveil further information about the involved mechanisms.

View Article and Find Full Text PDF

Sepsis is a life-threatening condition that arises from a poorly regulated inflammatory response to pathogenic organisms. Current treatments are limited to antibiotics, fluid resuscitation, and other supportive therapies. New targets for monitoring disease progression and therapeutic interventions are therefore critically needed.

View Article and Find Full Text PDF

Although numerous environmental exposures have been suggested as triggers for preclinical autoimmunity, only a few have been confidently linked to autoimmune diseases. For disease-associated exposures, the lung is a common site where chronic exposure results in cellular toxicity, tissue damage, inflammation, and fibrosis. These features are exacerbated by exposures to particulate material, which hampers clearance and degradation, thus facilitating persistent inflammation.

View Article and Find Full Text PDF

Mitochondrial Hsp70 (HSPA9, mtHsp70, mortalin) in conjunction with a complex set of other proteins is involved in the transport of polypeptides across the mitochondrial matrix. This observation allows us to hypothesize that HSPA9 might interact with membranes directly, similarly to other Hsp70s. Thus, we investigated whether human HSPA9 could also get inserted into lipid membranes.

View Article and Find Full Text PDF

Heat shock proteins (HSPs) are ubiquitous polypeptides expressed in all living organisms that participate in several basic cellular processes, including protein folding, from which their denomination as molecular chaperones originated. There are several HSPs, including HSPA5, also known as 78-kDa glucose-regulated protein (GRP78) or binding immunoglobulin protein (BIP) that is an ER resident involved in the folding of polypeptides during their translocation into this compartment prior to the transition to the Golgi network. HSPA5 is detected on the surface of cells or secreted into the extracellular environment.

View Article and Find Full Text PDF

Urbanization in low-income countries represents an important inflection point in the epidemiology of disease, with rural populations experiencing high rates of chronic and recurrent infections and urban populations displaying a profile of noncommunicable diseases. To investigate if urbanization alters the expression of genes encoding mitochondrial proteins, we queried gene microarray data from rural and urban populations living in Morocco (GSE17065). The R Bioconductor packages edgeR and limma were used to identify genes with different expression.

View Article and Find Full Text PDF

The Hsp70 family of heat shock proteins plays a critical function in maintaining cellular homeostasis within various subcellular compartments. The human mitochondrial Hsp70 (HSPA9) has been associated with cellular death, senescence, cancer and neurodegenerative diseases, which is the rational for the name mortalin. It is well documented that mortalin, such as other Hsp70s, is prone to self-aggregation, which is related to mitochondria biogenesis failure.

View Article and Find Full Text PDF

Once thought of as an inert fatty tissue present only to provide insulation for the peritoneal cavity, the omentum is currently recognized as a vibrant immunologic organ with a complex structure uniquely suited for defense against pathogens and injury. The omentum is a source of resident inflammatory and stem cells available to participate in the local control of infection, wound healing, and tissue regeneration. It is intimately connected with the systemic vasculature and communicates with the central nervous system and the hypothalamic pituitary adrenal axis.

View Article and Find Full Text PDF

Increasing evidence shows that heat shock proteins (hsp) escape the cytosol gaining access to the extracellular environment, acting as signaling agents. Since the majority of these proteins lack the information necessary for their export via the classical secretory pathway, attention has been focused on alternative releasing mechanisms. Crossing the plasma membrane is a major obstacle to the secretion of a cytosolic protein into the extracellular milieu.

View Article and Find Full Text PDF

Sepsis is a major clinical challenge, with therapy limited to supportive interventions. Therefore, the search for novel remedial approaches is of great importance. We addressed whether hyperbaric oxygen therapy (HBOT) could improve the outcome of sepsis using an acute experimental mouse model.

View Article and Find Full Text PDF

Background: Human exposure to mercury leads to a variety of pathologies involving numerous organ systems including the immune system. A paucity of epidemiological studies and suitable diagnostic criteria, however, has hampered collection of sufficient data to support a causative role for mercury in autoimmune diseases. Nevertheless, there is evidence that mercury exposure in humans is linked to markers of inflammation and autoimmunity.

View Article and Find Full Text PDF

The omentum is a large mesenchymal fibro-fatty tissue with remarkable healing capability. It is also rich in immune cells, including macrophages and lymphocytes, within particular structures named milky spots. Clinical observations indicate a high incidence of peritonitis after the removal of the omentum suggesting that it may play a role in sepsis.

View Article and Find Full Text PDF

Extracellular vesicles (ECVs) are heterogeneous membrane-enclosed structures containing proteins, nucleic acids, and lipids that participate in intercellular communication by transferring their contents to recipient cells. Although most of the attention has been directed at the biologic effect of proteins and microRNA, the contribution of phospholipids present in ECVs on cellular activation has not been extensively addressed. We investigated the biologic effect of phosphatidylserine (PS) and phosphatidylcholine (PC), 2 phospholipids highly abundant in ECVs.

View Article and Find Full Text PDF

Extracellular vesicles (ECV) reflect physiological or pathological conditions, emerging as potential biomarkers for disease. They can be obtained from a variety of body fluids, particularly urine that is an ideal source because it can be obtained in great quantities, recurrently and with minimal intervention. However, the characterization of urine ECV is challenging because the preparation is usually contaminated with soluble proteins, such as uromodulin (UMOD) or Tamm-Horsfall glycoprotein that forms large extracellular filaments co-sedimenting with ECV.

View Article and Find Full Text PDF

Susceptibility to autoimmune diseases is dependent on multigenic inheritance, environmental factors, and stochastic events. Although there has been substantial progress in identifying predisposing genetic variants, a significant challenge facing autoimmune disease research is the identification of the specific events that trigger loss of tolerance, autoreactivity and ultimately autoimmune disease. Accordingly, studies have indicated that a wide range of extrinsic factors including drugs, chemicals, microbes, and other environmental factors can induce autoimmunity, particularly systemic autoimmune diseases such as lupus.

View Article and Find Full Text PDF

Background: Non-communicable diseases (NCDs), such as atherosclerosis and cancers, are a leading cause of death worldwide. An important, yet poorly explained epidemiological feature of NCDs is their low incidence in under developed areas of low-income countries and rising rates in urban areas.

Methods: With the goal of better understanding how urbanization increases the incidence of NCDs, we provide an overview of the urbanization process in sub-Saharan Africa, discuss gene expression differences between rural and urban populations, and review the current NCD determinant model.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to dementia caused by advanced neuronal dysfunction and death. The most significant symptoms of AD are observed at late stages of the disease when interventions are most likely too late to ameliorate the condition. Currently, the predominant theory for AD is the "amyloid hypothesis," which states that abnormally increased levels of amyloid β (Aβ) peptides result in the production of a variety of aggregates that are neurotoxic.

View Article and Find Full Text PDF