J Racial Ethn Health Disparities
December 2024
The continued low numbers of Blacks in STEMM (Science, Technology, Engineering, Mathematics, and Medicine) represent an American crisis that threatens growing awareness and efforts to effectively address health disparities that affect the Black population. Regenerative engineering is an emerging STEMM field that seeks to combine principles from engineering, life sciences, physics, and medicine to develop new technologies for repairing and regenerating damaged tissues and organs. We believe that regenerative engineering has the potential to address some of the root causes of health disparities by developing new approaches that are more accessible and affordable, particularly for low-income communities and people living in rural areas.
View Article and Find Full Text PDFPurpose: The majority of adult tissues are limited in self-repair and regeneration due to their poor intrinsic regenerative capacity. It is widely recognized that stem cells are present in almost all adult tissues, but the natural regeneration in adult mammals is not sufficient to recover function after injury or disease. Historically, 3 classes of stem cells have been defined: embryonic stem cells (ESCs), adult mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs).
View Article and Find Full Text PDFPurpose: Osteoarthritis (OA) is a global musculoskeletal disorder that affects primarily the knee and hip joints without any FDA-approved disease-modifying therapies. Animal models are essential research tools in developing therapies for OA; many animal studies have provided data for the initiation of human clinical trials. Despite this, there is still a need for strategies to recapitulate the human experience using animal models to better develop treatments and understand pathogenesis.
View Article and Find Full Text PDFHydrogels derived from decellularized extracellular matrices (ECM) of animal origin show immense potential for regenerative applications due to their excellent cytocompatibility and biomimetic properties. Despite these benefits, the impact of decellularization protocols on the properties and immunogenicity of these hydrogels remains relatively unexplored. In this study, porcine skeletal muscle ECM (smECM) underwent decellularization using mechanical disruption (MD) and two commonly employed decellularization detergents, sodium deoxycholate (SDC) or Triton X-100.
View Article and Find Full Text PDFJ Racial Ethn Health Disparities
June 2024
The underrepresentation of Black doctors is a significant issue in the US that led to the perpetuation of health disparities in the African American community. Racial and ethnic minorities in the US have been shown to have higher rates of chronic diseases, such as hypertension, diabetes, and cardiovascular disease, as well as higher rates of obesity and premature death compared to White people. While Blacks make up more than 13% of the US population, they comprise only 4% of US doctors and less than 7% of medical students.
View Article and Find Full Text PDFIEEE Open J Eng Med Biol
February 2024
Over the past two decades Biomedical Engineering has emerged as a major discipline that bridges societal needs of human health care with the development of novel technologies. Every medical institution is now equipped at varying degrees of sophistication with the ability to monitor human health in both non-invasive and invasive modes. The multiple scales at which human physiology can be interrogated provide a profound perspective on health and disease.
View Article and Find Full Text PDFFatty expansion is one of the features of muscle degeneration due to muscle injuries, and its presence interferes with muscle regeneration. Specifically, poor clinical outcomes have been linked to fatty expansion in rotator cuff tears and repairs. Our group recently found that fibroblast growth factor 8b (FGF-8b) inhibits adipogenic differentiation and promotes myofiber formation of mesenchymal stem cells in vitro.
View Article and Find Full Text PDFMuscle degeneration is one the main factors that lead to the high rate of retear after a successful repair of rotator cuff (RC) tears. The current surgical practices have failed to treat patients with chronic massive rotator cuff tears (RCTs). Therefore, regenerative engineering approaches are being studied to address the challenges.
View Article and Find Full Text PDFCobalt-containing alloys are useful for orthopedic applications due to their low volumetric wear rates, corrosion resistance, high mechanical strength, hardness, and fatigue resistance. Unfortunately, these prosthetics release significant levels of cobalt ions, which was only discovered after their widespread implantation into patients requiring hip replacements. These cobalt ions can result in local toxic effects-including peri-implant toxicity, aseptic loosening, and pseudotumor-as well as systemic toxic effects-including neurological, cardiovascular, and endocrine disorders.
View Article and Find Full Text PDFJ Racial Ethn Health Disparities
December 2023
If the 20th century was the age of mapping and controlling the external world, the 21st century is the biomedical age of mapping and controlling the biological internal world. The biomedical age is bringing new technological breakthroughs for sensing and controlling human biomolecules, cells, tissues, and organs, which underpin new frontiers in the biomedical discovery, data, biomanufacturing, and translational sciences. This article reviews what we believe will be the next wave of biomedical engineering (BME) education in support of the biomedical age, what we have termed BME 2.
View Article and Find Full Text PDFOsteoarthritis affects millions of people worldwide but current treatments using analgesics or anti-inflammatory drugs only alleviate symptoms of this disease. Here, we present an injectable, biodegradable piezoelectric hydrogel, made of short electrospun poly-L-lactic acid nanofibers embedded inside a collagen matrix, which can be injected into the joints and self-produce localized electrical cues under ultrasound activation to drive cartilage healing. In vitro, data shows that the piezoelectric hydrogel with ultrasound can enhance cell migration and induce stem cells to secrete TGF-β1, which promotes chondrogenesis.
View Article and Find Full Text PDFThe high retear rate after a successful repair of the rotator cuff (RC) is a major clinical challenge. Muscle atrophy and fat accumulation of RC muscles over time adversely affect the rate of retear. Since current surgical techniques do not improve muscle degenerative conditions, new treatments are being developed to reduce muscle atrophy and fat accumulation.
View Article and Find Full Text PDFArthroplasty implants can undergo corrosion at the modular components, trunnion, and hinges, owing to implant material makeup, micromotion, and interaction with body fluid. In this review, various mechanisms of corrosion in arthroplasty were explored with suggestions on means of improvement. We identified 10 methods including pitting, crevice, mechanically assisted crevice corrosion, fretting, fretting initiated crevice corrosion, mechanically assisted taper corrosion, galvanic corrosion, stress/tension, fatigue corrosion, and inflammatory cell induced corrosion.
View Article and Find Full Text PDFBone grafting procedures have become increasingly common in the United States, with approximately 500,000 cases occurring each year at a societal cost exceeding $2.4 billion. Recombinant human bone morphogenetic proteins (rhBMPs) are therapeutic agents that have been widely used by orthopedic surgeons to stimulate bone tissue formation alone and when paired with biomaterials.
View Article and Find Full Text PDFSuccessful regeneration of critical-size defects remains one of the significant challenges in regenerative engineering. These large-scale bone defects are difficult to regenerate and are often reconstructed with matrices that do not provide adequate oxygen levels to stem cells involved in the regeneration process. Hypoxia-induced necrosis predominantly occurs in the center of large matrices since the host tissue's local vasculature fails to provide sufficient nutrients and oxygen.
View Article and Find Full Text PDFDespite quantum leaps, the biomimetic regeneration of cartilage and osteochondral regeneration remains a major challenge, owing to the complex and hierarchical nature of compositional, structural and functional properties. In this review, an account of the prevailing challenges in biomimicking the gradients in porous microstructure, cells and extracellular matrix (ECM) orientation is presented. Further, the spatial arrangement of the cues in inducing vascularization in the subchondral bone region while maintaining the avascular nature of the adjacent cartilage layer is highlighted.
View Article and Find Full Text PDFRegenerative engineering is a field that seeks to regenerate complex tissues and biological systems, rather than simply restore and repair individual tissues or organs. Since the first introduction of regenerative engineering in 2012, numerous research has been devoted to the development of this field. Biodegradable polymers such as polyphosphazenes in particular have drawn significant interest as regenerative engineering materials for their synthetic flexibility in designing into materials with a wide range of mechanical properties, degradation rates, and chemical functionality.
View Article and Find Full Text PDFPurpose: The knee joint is prone to osteoarthritis (OA) due to its anatomical position, and several reports have implicated the imbalance between catabolic and anabolic processes within the joint as the main culprit, thus leading to investigations towards attenuation of these inflammatory signals for OA treatment. In this review, we have explored clinical evidence supporting the use of stromal vascular fraction (SVF), known for its anti-inflammatory characteristics for the treatment of OA.
Methods: Searches were made on PubMed, PMC, and Google Scholar with the keywords "adipose fraction knee regeneration, and stromal vascular fraction knee regeneration, and limiting searches within 2017-2020.
Osteoarthritis (OA) of the knee is the most common synovial joint disorder worldwide, with a growing incidence due to increasing rates of obesity and an aging population. A significant amount of research is currently being conducted to further our understanding of the pathophysiology of knee osteoarthritis to design less invasive and more effective treatment options once conservative management has failed. Regenerative engineering techniques have shown promising preclinical results in treating OA due to their innovative approaches and have emerged as a popular area of study.
View Article and Find Full Text PDF