Publications by authors named "Catia Verbeke"

Diseases of immunity, including autoimmune diseases such as multiple sclerosis, transplantation graft rejection, allergy, and asthma, are prevalent and increasing in prevalence. They contribute to significant morbidity and mortality; however, few if any curative therapies exist, and those that are available lack either potency or specificity. Dendritic cells (DCs) are sentinels of the immune system that connect the innate and adaptive immune system and are critical regulators of both immunity and tolerance.

View Article and Find Full Text PDF

Poorly immunogenic tumors, including triple negative breast cancers (TNBCs), remain resistant to current immunotherapies, due in part to the difficulty of reprogramming the highly immunosuppressive tumor microenvironment (TME). Here we show that peritumorally injected, macroporous alginate gels loaded with granulocyte-macrophage colony-stimulating factor (GM-CSF) for concentrating dendritic cells (DCs), CpG oligonucleotides, and a doxorubicin-iRGD conjugate enhance the immunogenic death of tumor cells, increase systemic tumor-specific CD8 + T cells, repolarize tumor-associated macrophages towards an inflammatory M1-like phenotype, and significantly improve antitumor efficacy against poorly immunogenic TNBCs. This system also prevents tumor recurrence after surgical resection and results in 100% metastasis-free survival upon re-challenge.

View Article and Find Full Text PDF

Background: Periodontal disease results from the pathogenic interactions between the tissue, immune system, and microbiota; however, standard therapy fails to address the cellular mechanism underlying the chronic inflammation. Dendritic cells (DC) are key regulators of T cell fate, and biomaterials that recruit and program DC locally can direct T cell effector responses. We hypothesized that a biomaterial that recruited and programmed DC toward a tolerogenic phenotype could enrich regulatory T cells within periodontal tissue, with the eventual goal of attenuating T cell mediated pathology.

View Article and Find Full Text PDF

Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore-forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide-co-glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer.

View Article and Find Full Text PDF

The gastrointestinal (GI) epithelium is a highly regenerative tissue with the potential to provide a renewable source of insulin(+) cells after undergoing cellular reprogramming. Here, we show that cells of the antral stomach have a previously unappreciated propensity for conversion into functional insulin-secreting cells. Native antral endocrine cells share a surprising degree of transcriptional similarity with pancreatic β cells, and expression of β cell reprogramming factors in vivo converts antral cells efficiently into insulin(+) cells with close molecular and functional similarity to β cells.

View Article and Find Full Text PDF

Biomaterials-based vaccines have emerged as a powerful method to evoke potent immune responses directly in vivo, without the need for ex vivo cell manipulation, and modulating dendritic cell (DC) responses in a noninflammatory context could enable the development of tolerogenic vaccines to treat autoimmunity. This study describes the development of a noninflammatory, injectable hydrogel system to locally enrich DCs in vivo without inducing their maturation or activation, as a first step toward this goal. Alginate hydrogels that form pores in situ are characterized and used as a physical scaffold for cell infiltration.

View Article and Find Full Text PDF

The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive.

View Article and Find Full Text PDF

A biomaterial-based vaccination system that uses minimal extracorporeal manipulation could provide in situ enhancement of dendritic cell (DC) numbers, a physical space where DCs interface with transplanted tumour cells, and an immunogenic context. Here we encapsulate GM-CSF, serving as a DC enhancement factor, and CpG ODN, serving as a DC activating factor, into sponge-like macroporous cryogels. These cryogels are injected subcutaneously into mice to localize transplanted tumour cells and deliver immunomodulatory factors in a controlled spatio-temporal manner.

View Article and Find Full Text PDF

Implanting materials in the body to program host immune cells is a promising alternative to transplantation of cells manipulated ex vivo to direct an immune response, but doing so requires a surgical procedure. Here we demonstrate that high-aspect-ratio, mesoporous silica rods (MSRs) injected with a needle spontaneously assemble in vivo to form macroporous structures that provide a 3D cellular microenvironment for host immune cells. In mice, substantial numbers of dendritic cells are recruited to the pores between the scaffold rods.

View Article and Find Full Text PDF

In vitro models of normal mammary epithelium have correlated increased extracellular matrix (ECM) stiffness with malignant phenotypes. However, the role of increased stiffness in this transformation remains unclear because of difficulties in controlling ECM stiffness, composition and architecture independently. Here we demonstrate that interpenetrating networks of reconstituted basement membrane matrix and alginate can be used to modulate ECM stiffness independently of composition and architecture.

View Article and Find Full Text PDF

The innate cellular and molecular components required to mediate effective vaccination against weak tumor-associated antigens remain unclear. In this study, we used polymeric cancer vaccines incorporating different classes of adjuvants to induce tumor protection, to identify dendritic cell (DC) subsets and cytokines critical to this efficacy. Three-dimensional, porous polymer matrices loaded with tumor lysates and presenting distinct combinations of granulocyte macrophage colony-stimulating factor (GM-CSF) and various Toll-like receptor (TLR) agonists affected 70% to 90% prophylactic tumor protection in B16-F10 melanoma models.

View Article and Find Full Text PDF

Injectable biomaterials are increasingly being explored to minimize risks and complications associated with surgical implantation. We describe a strategy for delivery via conventional needle-syringe injection of large preformed macroporous scaffolds with well-defined properties. Injectable 3D scaffolds, in the form of elastic sponge-like matrices, were prepared by environmentally friendly cryotropic gelation of a naturally sourced polymer.

View Article and Find Full Text PDF

Transcriptome microarrays have become one of the tools of choice for investigating the genes involved in tumorigenesis and tumor progression, as well as finding new biomarkers and gene expression signatures for the diagnosis and prognosis of cancer. Here, we describe a new database for Integrated Tumor Transcriptome Array and Clinical data Analysis (ITTACA). ITTACA centralizes public datasets containing both gene expression and clinical data.

View Article and Find Full Text PDF