Neuronal network formation is facilitated by recognition between synaptic cell adhesion molecules at the cell surface. Alternative splicing of cell adhesion molecules provides additional specificity in forming neuronal connections. For the teneurin family of cell adhesion molecules, alternative splicing of the EGF-repeats and NHL domain controls synaptic protein-protein interactions.
View Article and Find Full Text PDFCell-surface expressed contactin 1 and neurofascin 155 control wiring of the nervous system and interact across cells to form and maintain paranodal myelin-axon junctions. The molecular mechanism of contactin 1 - neurofascin 155 adhesion complex formation is unresolved. Crystallographic structures of complexed and individual contactin 1 and neurofascin 155 binding regions presented here, provide a rich picture of how competing and complementary interfaces, post-translational glycosylation, splice differences and structural plasticity enable formation of diverse adhesion sites.
View Article and Find Full Text PDFEstablishment of correct synaptic connections is a crucial step during neural circuitry formation. The Teneurin family of neuronal transmembrane proteins promotes cell-cell adhesion via homophilic and heterophilic interactions, and is required for synaptic partner matching in the visual and hippocampal systems in vertebrates. It remains unclear how individual Teneurins form macromolecular cis- and trans-synaptic protein complexes.
View Article and Find Full Text PDFDendritic inhibitory synapses are most efficient in modulating excitatory inputs localized on the same dendrite, but it is unknown whether their location is random or regulated. Here, we show that the formation of inhibitory synapses can be directed by excitatory synaptic activity on the same dendrite. We stimulated dendritic spines close to a GABAergic axon crossing by pairing two-photon glutamate uncaging with postsynaptic depolarization in CA1 pyramidal cells.
View Article and Find Full Text PDFChanges in inhibitory connections are essential for experience-dependent circuit adaptations. Defects in inhibitory synapses are linked to neurodevelopmental disorders, but the molecular processes underlying inhibitory synapse formation are not well understood. Here we use high-resolution two-photon microscopy in organotypic hippocampal slices from GAD65-GFP mice of both sexes to examine the signaling pathways induced by the postsynaptic signaling molecule Semaphorin4D (Sema4D) during inhibitory synapse formation.
View Article and Find Full Text PDFKinesin and dynein motors drive bidirectional cargo transport along microtubules and have a critical role in polarized cargo trafficking in neurons [1, 2]. The kinesin-2 family protein KIF17 is a dendrite-specific motor protein and has been shown to interact with several dendritic cargoes [3-7]. However, the mechanism underlying the dendritic targeting of KIF17 remains poorly understood [8-11].
View Article and Find Full Text PDFKinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy.
View Article and Find Full Text PDFAxon formation, the initial step in establishing neuronal polarity, critically depends on local microtubule reorganization and is characterized by the formation of parallel microtubule bundles. How uniform microtubule polarity is achieved during axonal development remains an outstanding question. Here, we show that the tripartite motif containing (TRIM) protein TRIM46 plays an instructive role in the initial polarization of neuronal cells.
View Article and Find Full Text PDFSynaptic connections in our brains change continuously and throughout our lifetime. Despite ongoing synaptic changes, a healthy balance between excitation and inhibition is maintained by various forms of homeostatic and activity-dependent adaptations, ensuring stable functioning of neuronal networks. In this review we summarize experimental evidence for activity-dependent changes occurring in inhibitory axons, in cultures as well as in vivo.
View Article and Find Full Text PDF