Publications by authors named "Catia G Alves"

Nanomaterials with near infrared light absorption can mediate an antitumoral photothermal-photodynamic response that is weakly affected by cancer cells' resistance mechanisms. Such nanosystems are commonly prepared by loading photosensitizers into nanomaterials displaying photothermal capacity, followed by functionalization to achieve biological compatibility. However, the translation of these multifunctional nanomaterials has been limited by the fact that many of the photosensitizers are not responsive to near infrared light.

View Article and Find Full Text PDF

Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential.

View Article and Find Full Text PDF

Photothermal therapy has emerged as a new promising strategy for the management of cancer, either alone or combined with other therapeutics, such as chemotherapy. The use of nanoparticles for multimodal therapy can improve treatment performance and reduce drug doses and associated side effects. Here we propose the development of a novel multifunctional nanosystem based on solid lipid nanoparticles co-loaded with gold nanorods and mitoxantrone and functionalized with folic acid for dual photothermal therapy and chemotherapy of breast cancer.

View Article and Find Full Text PDF

To address the limitations of IR780 by preparing hydrophilic polymer-IR780 conjugates and to employ these conjugates in the assembly of nanoparticles (NPs) intended for cancer photothermal therapy. The cyclohexenyl ring of IR780 was conjugated for the first time with thiol-terminated poly(2-ethyl-2-oxazoline) (PEtOx). This novel poly(2-ethyl-2-oxazoline)-IR780 (PEtOx-IR) conjugate was combined with D-α-tocopheryl succinate (TOS), leading to the assembly of mixed NPs (PEtOx-IR/TOS NPs).

View Article and Find Full Text PDF

Nano-sized materials have been widely explored in the biomedicine field, especially due to their ability to encapsulate drugs intended to be delivered to cancer cells. However, systemically administered nanomaterials face several barriers that can hinder their tumor-homing capacity. In this way, researchers are now focusing their efforts in developing technologies that can deliver the nanoparticles directly into the tumor tissue.

View Article and Find Full Text PDF

Near infrared (NIR) light-responsive nanomaterials hold potential to mediate combinatorial therapies targeting several cancer hallmarks. When irradiated, these nanomaterials produce reactive oxygen species (photodynamic therapy) and/or a temperature increase (photothermal therapy). These events can damage cancer cells and trigger the release of drugs from the nanomaterials' core.

View Article and Find Full Text PDF

The development of strategies capable of eliminating metastasized cancer cells and preventing tumor recurrence is an exciting and extremely important area of research. In this regard, therapeutic approaches that explore the synergies between nanomaterial-mediated phototherapies and immunostimulants/immune checkpoint inhibitors have been yielding remarkable results in pre-clinical cancer models. These nanomaterials can accumulate in tumors and trigger, after irradiation of the primary tumor with near infrared light, a localized temperature increase and/or reactive oxygen species.

View Article and Find Full Text PDF

The high near infrared (NIR) absorption displayed by reduced graphene oxide (rGO) nanostructures renders them a great potential for application in cancer photothermal therapy. However, the production of this material often relies on the use of hydrazine as a reductant, leading to poor biocompatibility and environmental-related issues. In addition, to improve rGO colloidal stability, this material has been functionalized with poly(ethylene glycol).

View Article and Find Full Text PDF

Breast cancer is the leading cause of cancer-related deaths among women worldwide. The conventional chemotherapeutic regimens used in the treatment of this disease often lead to severe side-effects and reduced efficacy. In this study, a novel drug delivery system for the chemotherapeutic drug mitoxantrone (Mito) was developed using solid lipid nanoparticles (SLN).

View Article and Find Full Text PDF

Chemo-photothermal therapy (chemo-PTT) mediated by nanomaterials holds a great potential for cancer treatment. However, the tumor uptake of the systemically administered nanomaterials was recently found to be below 1%. To address this limitation, the development of injectable tridimensional polymeric matrices capable of delivering nanomaterials directly into the tumor site appears to be a promising approach.

View Article and Find Full Text PDF

Enhance the colloidal stability and photothermal capacity of graphene oxide (GO) by functionalizing it with sulfobetaine methacrylate (SBMA)-grafted bovine serum albumin (BSA; i.e., SBMA--BSA) and by loading IR780, respectively.

View Article and Find Full Text PDF

The application of Graphene Oxide (GO) in cancer photothermal therapy is hindered by its lack of colloidal stability in biologically relevant media and modest Near Infrared (NIR) absorption. In this regard, the colloidal stability of GO has been improved by functionalizing its surface with poly(ethylene glycol) (PEG), which may not be optimal due to the recent reports on PEG immunogenicity. On the other hand, the chemical reduction of GO using hydrazine hydrate has been applied to enhance its photothermal capacity, despite decreasing its cytocompatibility.

View Article and Find Full Text PDF

Combinatorial cancer therapies mediated by nanomaterials can potentially overcome the limitations of conventional treatments. These therapies are generally investigated using 2D in vitro cancer models, leading to an inaccurate screening. Recently, 3D in vitro spheroids have emerged in the preclinical testing stage of nanomedicines due to their ability to mimic key features of the in vivo solid tumors.

View Article and Find Full Text PDF

Functionalized graphene oxide (GO) and reduced GO (rGO) based nanomaterials hold a great potential for cancer photothermal therapy. However, their systemic administration has been associated with an accelerated blood clearance and/or with suboptimal tumor uptake. To address these limitations, the local delivery of GO/rGO to the tumor site by 3D matrices arises as a promising strategy.

View Article and Find Full Text PDF

The use of nanomedicines for cancer treatment holds a great potential due to their improved efficacy and safety. During the nanomedicine preclinical evaluation stage, these are mainly tested on cell culture monolayers. However, these 2D models are an unrealistic representation of the tumors, leading to an inaccurate screening of the candidate formulations.

View Article and Find Full Text PDF

New insights about nanomaterials' biodistribution revealed their ability to achieve tumor accumulation by taking advantage from the dynamic vents occurring in tumor's vasculature. This paradigm-shift emphasizes the importance of extending nanomaterials' blood circulation time to enhance their tumor uptake. The classic strategy to improve nanomaterials' stability during circulation relies on their functionalization with poly(ethylene glycol).

View Article and Find Full Text PDF

Developing technologies that allow the simultaneous diagnosis and treatment of cancer (theragnostic) has been the quest of numerous interdisciplinary research teams. In this context, nanomaterials incorporating prototypic near infrared (NIR)-light responsive heptamethine cyanines have been showing very promising results for cancer theragnostic. The precisely engineered features of these nanomaterials endow them with the ability to achieve a high tumor accumulation, enabling a tumor's visualization by NIR fluorescence and photoacoustic imaging modalities.

View Article and Find Full Text PDF

Combining hyperthermia with other therapies holds a great potential for improving cancer treatment. In this approach, the increase in the body temperature can exert a therapeutic effect on cells and/or enhance the effectiveness of anticancer agents. However, the conventional methodologies available to induce hyperthermia cannot confine a high temperature increase to the tumor-site while maintaining healthy tissues unexposed and ensuring minimal invasiveness.

View Article and Find Full Text PDF

IR780 is a near infrared (NIR) dye with a huge potential to be applied in cancer phototherapy and imaging. However, IR780 poor water solubility and acute cytotoxicity limit its direct use in cancer theragnostic. Herein, a novel Hyaluronic acid (HA)-based amphiphilic polymer was used, for the first time, in the preparation of polymeric nanoparticles (HPN) encapsulating IR780 aimed to be applied in breast cancer therapy.

View Article and Find Full Text PDF

Reduced graphene oxide (rGO) nanomaterials display promising properties for application in cancer photothermal therapy (PTT). rGO is usually obtained by treating graphene oxide (GO) with hydrazine hydrate. However, this reducing agent contributes for the low cytocompatibility exhibited by rGO.

View Article and Find Full Text PDF

PEGylated graphene oxide (GO) nanomaterials have been showing promising results in cancer therapy, due to their drug loading and photothermal capacities. However, the recent reports regarding the immunogenicity of poly(ethylene glycol) based coatings highlight the importance of investigating alternative materials to functionalize GO. Herein, GO derivatives were functionalized for the first time with an amphiphilic polymer based on poly(2-ethyl-2-oxazoline) and were co-loaded with doxorubicin (DOX) and D-α-Tocopherol succinate (TOS) to be applied in chemo-phototherapy of breast cancer cells.

View Article and Find Full Text PDF

Graphene family nanomaterials' (GFN) ability to interact with near-infrared light has propelled their application in cancer photothermal therapy. Furthermore, the graphitic lattice of GFN can adsorb different types of molecules, which has motivated their use in cancer drug delivery. However, the direct application of GFN in cancer therapy is severely hindered by their poor colloidal stability, sub-optimal safety, inefficient tumor uptake and non-selectivity towards cancer cells.

View Article and Find Full Text PDF

IR780, a molecule with a strong optical absorption and emission in the near infrared (NIR) region, is receiving an increasing attention from researchers working in the area of cancer treatment and imaging. Upon irradiation with NIR light, IR780 can produce reactive oxygen species as well as increase the body temperature, thus being a promising agent for application in cancer photodynamic and photothermal therapy. However, IR780's poor water solubility, fast clearance, acute toxicity and low tumor uptake may limit its use.

View Article and Find Full Text PDF