The continued development of in vitro systems that accurately emulate human response to drugs or chemical agents will impact drug development, our understanding of chemical toxicity, and enhance our ability to respond to threats from chemical or biological agents. A promising technology is to build microscale replicas of humans that capture essential elements of physiology, pharmacology, and/or toxicology (microphysiological systems). Here, we review progress on systems for microscale models of mammalian systems that include two or more integrated cellular components.
View Article and Find Full Text PDFThe sensitivity of a microfluidic impedance flow cytometer is governed by the dimensions of the sample analysis volume. A small volume gives a high sensitivity, but this can lead to practical problems including fabrication and clogging of the device. We describe a microfluidic impedance cytometer which uses an insulating fluid to hydrodynamically focus a sample stream of particles suspended in electrolyte, through a large sensing volume.
View Article and Find Full Text PDFWe present a high-speed microfluidic technique for characterizing the dielectric properties of individual polyelectrolyte microcapsules with different shell thicknesses using single-particle electrical impedance spectroscopy. Complete equivalent circuit analysis is developed to describe the electrical behavior of solid homogeneous microparticles and shelled microcapsules in suspension. The complete circuit model, which includes the resistance of the shell layer and the capacitance of the inner core, has been used to determine the permittivity and conductivity in the shell of single capsules.
View Article and Find Full Text PDF