Resistance genes (R-genes) from wild potato species confer protection against disease and can be introduced into cultivated potato varieties using breeding or biotechnology. The R-gene, Rpi-vnt1, which encodes the VNT1 protein, protects against late blight, caused by Phytophthora infestans. Heterologous expression and purification of active VNT1 in quantities sufficient for regulatory biosafety studies was problematic, making it impractical to generate hazard characterization data.
View Article and Find Full Text PDFThe goal of metabolomics data pre-processing is to eliminate systematic variation, such that biologically-related metabolite signatures are detected by statistical pattern recognition. Although several methods have been developed to tackle the issue of batch-to-batch variation, each method has its advantages and disadvantages. In this study, we used a reference sample as a normalization standard for test samples within the same batch, and each metabolite value is expressed as a ratio relative to its counterpart in the reference sample.
View Article and Find Full Text PDFProfiling techniques such as microarrays, proteomics, and metabolomics are used widely to assess the overall effects of genetic background, environmental stimuli, growth stage, or transgene expression in plants. To assess the potential regulatory use of these techniques in agricultural biotechnology, we carried out microarray and metabolomic studies of 3 different tissues from 11 conventional maize varieties. We measured technical variations for both microarrays and metabolomics, compared results from individual plants and corresponding pooled samples, and documented variations detected among different varieties with individual plants or pooled samples.
View Article and Find Full Text PDF"Genetically modified" (GM) or "biotech" crops have been the most rapidly adopted agricultural technology in recent years. The development of a GM crop encompasses trait identification, gene isolation, plant cell transformation, plant regeneration, efficacy evaluation, commercial event identification, safety evaluation, and finally commercial authorization. This is a lengthy, complex, and resource-intensive process.
View Article and Find Full Text PDFBefore a genetically modified (GM) crop can be commercialized it must pass through a rigorous regulatory process to verify that it is safe for human and animal consumption, and to the environment. One particular area of focus is the potential introduction of a known or cross-reactive allergen not previously present within the crop. The assessment of possible allergenicity uses the guidelines outlined by the Food and Agriculture Organization (FAO) and World Health Organization's (WHO) Codex Alimentarius Commission (Codex) to evaluate all newly expressed proteins.
View Article and Find Full Text PDFRice was transformed with either long DNA-segments of random genomic DNA from rice, or centromere-specific DNA sequences from either maize or rice. Despite the repetitive nature of the transgenic DNA sequences, the centromere-specific sequences were inserted largely intact and behave as simple Mendelian units. Between 4 and 5% of bombarded callus clusters were transformed when bombarded with just pCAMBIA 1305.
View Article and Find Full Text PDFWe have identified and characterized a 17- to 18-kD Ser50-phosphorylated form of maize (Zea mays) CENTROMERIC HISTONE H3 (phCENH3-Ser50). Immunostaining in both mitosis and meiosis indicates that CENH3-Ser50 phosphorylation begins in prophase/diplotene, increases to a maximum at prometaphase-metaphase, and drops during anaphase. Dephosphorylation is precipitous (approximately sixfold) at the metaphase-anaphase transition, suggesting a role in the spindle checkpoint.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2004
RNA is involved in a variety of chromatin modification events, ranging from large-scale structural rearrangements to subtle local affects. Here, we extend the evidence for RNA-chromatin interactions to the centromere core. The data indicate that maize centromeric retrotransposons (CRMs) and satellite repeats (CentC) are not only transcribed, but that nearly half of the CRM and CentC RNA is tightly bound to centromeric histone H3 (CENH3), a key inner kinetochore protein.
View Article and Find Full Text PDFThe centromeres of Arabidopsis thaliana chromosomes contain megabases of complex DNA consisting of numerous types of repetitive DNA elements. We developed a chromatin immunoprecipitation (ChIP) technique using an antibody against the centromeric H3 histone, HTR12, in Arabidopsis. ChIP assays showed that the 180-bp centromeric satellite repeat was precipitated with the antibody, suggesting that this repeat is the key component of the centromere/kinetochore complex in Arabidopsis.
View Article and Find Full Text PDFMaize centromeres are composed of CentC tandem repeat arrays, centromeric retrotransposons (CRs), and a variety of other repeats. One particularly well-conserved CR element, CRM, occurs primarily as complete and uninterrupted elements and is interspersed thoroughly with CentC at the light microscopic level. To determine if these major centromeric DNAs are part of the functional centromere/kinetochore complex, we generated antiserum to maize centromeric histone H3 (CENH3).
View Article and Find Full Text PDF