Publications by authors named "Cathy M Fuller"

The association of the cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC) in the pathophysiology of cystic fibrosis (CF) is controversial. Previously, we demonstrated a close physical association between wild-type (WT) CFTR and WT ENaC. We have also shown that the F508del CFTR fails to associate with ENaC unless the mutant protein is rescued pharmacologically or by low temperature.

View Article and Find Full Text PDF

An imbalance of chloride and sodium ion transport in several epithelia is a feature of cystic fibrosis (CF), an inherited disease that is a consequence of mutations in the cftr gene. The cftr gene codes for a Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Some mutations in this gene cause the balance between Cl(-) secretion and Na(+) absorption to be disturbed in the airways; Cl(-) secretion is impaired, whereas Na(+) absorption is elevated.

View Article and Find Full Text PDF

We present the evidence for a direct physical association of cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC), two major ion channels implicated in the pathophysiology of cystic fibrosis, a devastating inherited disease. We employed fluorescence resonance energy transfer, a distance-dependent imaging technique with capability to detect molecular complexes with near angstrom resolution, to estimate the proximity of CFTR and ENaC, an essential variable for possible physical interaction to occur. Fluorescence resonance energy transfer studies were complemented with a classic biochemical approach: coimmunoprecipitation.

View Article and Find Full Text PDF