Publications by authors named "Cathy L Mendelsohn"

The intratumoral microbiome has recently emerged as a new hallmark of cancer, with implications for response or resistance to therapy. While bacteria can either promote or inhibit cancer growth, intratumoral bacteria can also be engineered using synthetic biology to remodel the tumor microenvironment. Here, we engineered the probiotic bacterium Nissle 1917 (EcN) to express the human chemokine CXCL13, a critical component of germinal center (GC) formation.

View Article and Find Full Text PDF

Intracellular infections by Gram-negative bacteria are a significant global health threat. The nuclear receptor Nur77 (also called TR3, NGFI-B, or NR4A1) was recently shown to sense cytosolic bacterial lipopolysaccharide (LPS). However, the potential role for Nur77 in controlling intracellular bacterial infection has not been examined.

View Article and Find Full Text PDF

Muscle invasive bladder cancers (BCs) can be divided into 2 major subgroups-basal/squamous (BASQ) tumors and luminal tumors. Since Pparg has low or undetectable expression in BASQ tumors, we tested the effects of rosiglitazone, Pparg agonist, in a mouse model of BASQ BC. We find that rosiglitazone reduces proliferation while treatment with rosiglitazone plus trametinib, a MEK inhibitor, induces apoptosis and reduces tumor volume by 91% after 1 month.

View Article and Find Full Text PDF

Purpose: Previous work identified rare variants in DSTYK associated with human congenital anomalies of the kidney and urinary tract (CAKUT). Here, we present a series of mouse and human studies to clarify the association, penetrance, and expressivity of DSTYK variants.

Methods: We phenotypically characterized Dstyk knockout mice of 3 separate inbred backgrounds and re-analyzed the original family segregating the DSTYK c.

View Article and Find Full Text PDF

Bladder cancers (BCs) can be divided into 2 major subgroups displaying distinct clinical behaviors and mutational profiles: basal/squamous (BASQ) tumors that tend to be muscle invasive, and luminal/papillary (LP) tumors that are exophytic and tend to be non-invasive. is a likely driver of LP BC and has been suggested to act as a tumor suppressor in BASQ tumors, where it is likely suppressed by MEK-dependent phosphorylation. Here we tested the effects of rosiglitazone, a agonist, in a mouse model of BBN-induced muscle invasive BC.

View Article and Find Full Text PDF

How cancer-associated chromatin abnormalities shape tumor-immune interaction remains incompletely understood. Recent studies have linked DNA hypomethylation and de-repression of retrotransposons to anti-tumor immunity through the induction of interferon response. Here, we report that inactivation of the histone H3K36 methyltransferase NSD1, which is frequently found in squamous cell carcinomas (SCCs) and induces DNA hypomethylation, unexpectedly results in diminished tumor immune infiltration.

View Article and Find Full Text PDF

The anaerobic actinobacterium was first isolated from the bladder by suprapubic aspiration more than 50 years ago. Since then, has been increasingly recognized as a common and often abundant member of the female urinary microbiome (urobiome). Some studies even suggest that the presence of is associated with urological disorders in women.

View Article and Find Full Text PDF

The urothelium of the bladder functions as a waterproof barrier between tissue and outflowing urine. Largely quiescent during homeostasis, this unique epithelium rapidly regenerates in response to bacterial or chemical injury. The specification of the proper cell types during development and injury repair is crucial for tissue function.

View Article and Find Full Text PDF

Pparg, a nuclear receptor, is downregulated in basal subtype bladder cancers that tend to be muscle invasive and amplified in luminal subtype bladder cancers that tend to be non-muscle invasive. Bladder cancers derive from the urothelium, one of the most quiescent epithelia in the body, which is composed of basal, intermediate, and superficial cells. We find that expression of an activated form of Pparg (VP16;Pparg) in basal progenitors induces formation of superficial cells in situ, that exit the cell cycle, and do not form tumors.

View Article and Find Full Text PDF

Background: Vesicoureteral reflux (VUR) is a common, familial genitourinary disorder, and a major cause of pediatric urinary tract infection (UTI) and kidney failure. The genetic basis of VUR is not well understood.

Methods: A diagnostic analysis sought rare, pathogenic copy number variant (CNV) disorders among 1737 patients with VUR.

View Article and Find Full Text PDF
Article Synopsis
  • The urothelium is a protective layer in the bladder that prevents infections, handles fluid exchange, and shields against toxins, and the nuclear receptor Pparg is linked to urothelial differentiation and bladder cancer.
  • Research reveals that Pparg is essential for the health of urothelial cells, influencing mitochondrial growth, cell maturation, and inflammation response during urinary tract infections (UTIs).
  • In Pparg mutants, the maturation of crucial urothelial barrier cells is impaired, leading to ongoing inflammation and abnormal cell differentiation, highlighting Pparg's role beyond fat and immune cell development.
View Article and Find Full Text PDF

In the version of this article initially published, affiliation 38 incorrectly read "ICNU-Nephrology and Urology Department, Barcelona, Spain"; "Renal Division, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain" is the correct affiliation. The error has been corrected in the HTML and PDF versions of the article.

View Article and Find Full Text PDF

Congenital anomalies of the kidney and urinary tract (CAKUT) are a major cause of pediatric kidney failure. We performed a genome-wide analysis of copy number variants (CNVs) in 2,824 cases and 21,498 controls. Affected individuals carried a significant burden of rare exonic (that is, affecting coding regions) CNVs and were enriched for known genomic disorders (GD).

View Article and Find Full Text PDF

The urothelium is an epithelia barrier lined by a luminal layer of binucleated, octoploid, superficial cells. Superficial cells are critical for production and transport of uroplakins, a family of proteins that assemble into a waterproof crystalline plaque that helps protect against infection and toxic substances. Adult urothelium is nearly quiescent, but rapidly regenerates in response to injury.

View Article and Find Full Text PDF

Renal agenesis and hypodysplasia (RHD) are major causes of pediatric chronic kidney disease and are highly genetically heterogeneous. We conducted whole-exome sequencing in 202 case subjects with RHD and identified diagnostic mutations in genes known to be associated with RHD in 7/202 case subjects. In an additional affected individual with RHD and a congenital heart defect, we found a homozygous loss-of-function (LOF) variant in SLIT3, recapitulating phenotypes reported with Slit3 inactivation in the mouse.

View Article and Find Full Text PDF

Recurrent bacterial infections are a significant burden worldwide, and prior history of infection is often a significant risk factor for developing new infections. For urinary tract infection (UTI), a history of two or more episodes is an independent risk factor for acute infection. However, mechanistic knowledge of UTI pathogenesis has come almost exclusively from studies in naive mice.

View Article and Find Full Text PDF

Missense mutations of fibroblast growth factor receptor 3 (FGFR3) occur in up to 80% of low-grade papillary urothelial carcinoma of the bladder (LGP-UCB) suggesting that these mutations are tumor drivers, although direct experimental evidence is lacking. Here we show that forced expression of FGFR3b-S249C, the most prevalent FGFR3 mutation in human LGP-UCB, in cultured urothelial cells resulted in slightly reduced surface translocation than wild-type FGFR3b, but nearly twice as much proliferation. When we expressed a mouse equivalent of this mutant (FGFR3b-S243C) in urothelia of adult transgenic mice in a tissue-specific and inducible manner, we observed significant activation of AKT and MAPK pathways.

View Article and Find Full Text PDF

Organotypic culture is an invaluable technique that allows researchers with the tool to analyze a tissue development in an isolated and well-defined environment. This technique also permits one to study the roles of different signaling systems/signaling molecules and to take advantage of the modern real-time imaging techniques, including confocal microscopy. With great success, our lab has used organotypic culture of the urogenital tract (UGT) to study growth and extension of the mesonephric (Wolffian) duct and its cloaca connection, ureter maturation, and bladder urothelium development (Batourina et al.

View Article and Find Full Text PDF

Cataloguing gene expression during development of the genitourinary tract will increase our understanding not only of this process but also of congenital defects and disease affecting this organ system. We have developed a high-resolution ontology with which to describe the subcompartments of the developing murine genitourinary tract. This ontology incorporates what can be defined histologically and begins to encompass other structures and cell types already identified at the molecular level.

View Article and Find Full Text PDF

Early inductive events in mammalian nephrogenesis depend on an interaction between the ureteric bud and the metanephric mesenchyme. However, mounting evidence points towards an involvement of additional cell types--such as stromal cells and angioblasts--in growth and patterning of the nephron. In this study, through analysis of the stem cell factor (SCF)/c-kit ligand receptor pair, we describe an additional distinct cell population in the early developing kidney.

View Article and Find Full Text PDF

Removal of toxic substances from the blood depends on patent connections between the kidney, ureters and bladder that are established when the ureter is transposed from its original insertion site in the male genital tract to the bladder. This transposition is thought to occur as the trigone forms from the common nephric duct and incorporates into the bladder. Here we re-examine this model in the context of normal and abnormal development.

View Article and Find Full Text PDF

Circulating retinoids (vitamin A and its derivatives) are found predominantly as retinol bound to retinol-binding protein (RBP), which transports retinol from liver stores to target tissues, or as retinyl ester incorporated in lipoproteins of dietary origin. The transport of retinoids from maternal to fetal circulation is poorly understood, especially under conditions of inadequate dietary vitamin A intake. Here we present RBP-/- mice as a tunable model of embryonic vitamin A deficiency.

View Article and Find Full Text PDF

Kidney organogenesis requires the morphogenesis of epithelial tubules. Inductive interactions between the branching ureteric buds and the metanephric mesenchyme lead to mesenchyme-to-epithelium transitions and tubular morphogenesis to form nephrons, the functional units of the kidney. The LIM-class homeobox gene Lim1 is expressed in the intermediate mesoderm, nephric duct, mesonephric tubules, ureteric bud, pretubular aggregates and their derivatives.

View Article and Find Full Text PDF