Carisoprodol is a frequently prescribed muscle relaxant. In recent years, this drug has been increasingly abused. The effects of carisoprodol have been attributed to its metabolite, meprobamate, a controlled substance that produces sedation via GABA(A) receptors (GABA(A)Rs).
View Article and Find Full Text PDFThe presence of phenylalanine (F) at the 6' position of transmembrane domain 2 (TM2) in the alpha4 subunit of alpha4beta2 nicotinic receptors enhances desensitization. As the GABA A receptor affords the ability to study the influence of as few as one and as many as five Fs at this position, we have used it to investigate potential subunit- and stoichiometry-dependent effects of the TM2 6'F mutation on desensitization. Whereas the presence of one F at this position decreased extent of desensitization, desensitization was increased in all configurations that included two or more Fs at the TM2 6' position; desensitization was particularly rapid with 3 or 4 F residues present.
View Article and Find Full Text PDFThe GABAA receptor is a ligand-gated ion channel whose function and activity can be regulated by ligand binding or alternatively may be influenced indirectly through the phosphorylation of specific subunits that comprise the GABAA receptor pentamer. With respect to phosphorylation, most studies have focused on either beta or gamma subunits, whereas the role of the alpha subunit as a relevant target of signaling kinases is largely unknown. Interestingly, we found a putative phosphorylation site for extracellular-signal regulated kinase (ERK), a key effector of the MAPK pathway, in almost all known alpha subunits of the GABAA receptor, including the ubiquitously expressed alpha1 subunit.
View Article and Find Full Text PDFAlkyl-substituted butyrolactones have both inhibitory and stimulatory effects on GABA(A) receptors. Lactones with small alkyl substitutions at the alpha-position positively modulate the channel, whereas beta-substituted lactones tend to inhibit the GABA(A) receptor. These compounds mediate inhibition through the picrotoxin site of the receptor.
View Article and Find Full Text PDFThe central nervous system convulsant picrotoxin (PTX) inhibits GABA(A) and glutamate-gated Cl(minus sign) channels in a use-facilitated fashion, whereas PTX inhibition of glycine and GABA(C) receptors displays little or no use-facilitated block. We have identified a residue in the extracellular aspect of the second transmembrane domain that converted picrotoxin inhibition of glycine alpha1 receptors from non-use-facilitated to use-facilitated. In wild type alpha1 receptors, PTX inhibited glycine-gated Cl(minus sign) current in a competitive manner and had equivalent effects on peak and steady-state currents, confirming a lack of use-facilitated block.
View Article and Find Full Text PDF