Activation of either the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt or the p38 mitogen-activated protein kinase (MAPK) signaling pathways accelerates myogenesis but only when the reciprocal pathway is functional. We therefore examined the hypothesis that cross-activation between these signaling cascades occurs to orchestrate myogenesis. We reveal a novel and reciprocal cross-talk and activation between the PI 3-kinase/Akt and p38 MAPK pathways that is essential for efficient myoblast differentiation.
View Article and Find Full Text PDFIgfbp5 is upregulated during the differentiation of several key cell lineages and in some tumours; the function of IGFBP-5 in these physiological and pathological situations is unknown. Since IGFBP-5 contains sequence motifs consistent with IGF-independent actions, the aim of these studies was to distinguish between IGF-dependent and -independent actions of IGFBP-5. Myc-tagged wild-type (termed wtIGFBP-5) and non-IGF binding mouse Igfbp5 (termed mutIGFBP-5) cDNAs were generated and used to transfect C2 myoblasts, a cell line that undergoes differentiation to myotubes in an IGF- and IGFBP-5-regulated manner.
View Article and Find Full Text PDFThe insulin-like growth factors (IGFs) are essential for development; bioavailable IGF is tightly regulated by six related IGF-binding proteins (IGFBPs). Igfbp5 is the most conserved and is developmentally up-regulated in key lineages and pathologies; in vitro studies suggest that IGFBP-5 functions independently of IGF interaction. Genetic ablation of individual Igfbps has yielded limited phenotypes because of substantial compensation by remaining family members.
View Article and Find Full Text PDF