The possible impact of genetically engineered plants that degrade the quorum sensing (QS) signal of the plant pathogen Pectobacterium carotovorum was evaluated on non-target plant-associated bacterial populations and communities using Nicotiana tabacum lines expressing the lactonase AttM that degrades QS signals (AttM), and the wild type (WT) parent line. Cell densities of total culturable bacteria and those of selected populations (pseudomonads, agrobacteria) isolated from plant rhizospheres and rhizoplanes were comparable whatever the genotype of the plants (AttM or WT). Similarly, cell densities of members of the bacterial communities relying upon acyl-homoserine-lactones (AHLs) to communicate, or naturally degrading AHL signals, were identical and independent of plant genotype.
View Article and Find Full Text PDFThe half-life of N-hexanoyl-l-homoserine lactone (C6-HSL) was determined under various pH and temperature conditions, and in several plant environments. C6-HSL was sensitive to alkaline pH, a process that was also temperature-dependent. In addition, C6-HSL disappeared from plant environments, i.
View Article and Find Full Text PDFA tobacco line genetically modified to produce two N-acyl homoserine lactones and its non-transformed parental line were grown in non-sterile soil. Microbial populations inhabiting the bulk soil, and those colonizing the root system of the two tobacco lines, were analyzed using cultivation-independent (phospholipid fatty acid and denaturing gradient gel electrophoresis) and cultivation-based assays. The cell density of total cultivable bacteria, fluorescent pseudomonads, sporulated, and thermotolerant bacteria was also determined in a time-course experiment (15 weeks).
View Article and Find Full Text PDFIn Gram-negative bacteria, quorum-sensing (QS) communication is mostly mediated by N-acyl homoserine lactones (N-AHSL). The diversity of bacterial populations that produce or inactivate the N-AHSL signal in soil and tobacco rhizosphere was investigated by restriction fragment length polymorphism (RFLP) analysis of amplified 16S DNA and DNA sequencing. Such analysis indicated the occurrence of N-AHSL-producing strains among the alpha-, beta- and gamma-proteobacteria, including genera known to produce N-AHSL (Rhizobium, Sinorhizobium and Pseudomonas) and novel genera with no previously identified N-AHSL-producing isolates (Variovorax, Sphingomonas and Massilia).
View Article and Find Full Text PDFBacteria degrading the quorum-sensing (QS) signal molecule N-hexanoylhomoserine lactone were isolated from a tobacco rhizosphere. Twenty-five isolates degrading this homoserine lactone fell into six groups according to their genomic REP-PCR and rrs PCR-RFLP profiles. Representative strains from each group were identified as members of the genera Pseudomonas, Comamonas, Variovorax and Rhodococcus: all these isolates degraded N-acylhomoserine lactones other than the hexanoic acid derivative, albeit with different specificity and kinetics.
View Article and Find Full Text PDF