Publications by authors named "Cathy C Westhues"

We introduce the R-package learnMET, developed as a flexible framework to enable a collection of analyses on multi-environment trial breeding data with machine learning-based models. learnMET allows the combination of genomic information with environmental data such as climate and/or soil characteristics. Notably, the package offers the possibility of incorporating weather data from field weather stations, or to retrieve global meteorological datasets from a NASA database.

View Article and Find Full Text PDF

The development of crop varieties with stable performance in future environmental conditions represents a critical challenge in the context of climate change. Environmental data collected at the field level, such as soil and climatic information, can be relevant to improve predictive ability in genomic prediction models by describing more precisely genotype-by-environment interactions, which represent a key component of the phenotypic response for complex crop agronomic traits. Modern predictive modeling approaches can efficiently handle various data types and are able to capture complex nonlinear relationships in large datasets.

View Article and Find Full Text PDF