Publications by authors named "Cathryn Parsons"

Background: Oil emulsions are commonly used as vaccine delivery platforms to facilitate slow release of antigen by forming a depot at the injection site. Antigen is trapped in the aqueous phase and as the emulsion degrades in vivo the antigen is passively released. DepoVax™ is a unique oil based delivery system that directly suspends the vaccine components in the oil diluent that forces immune cells to actively take up components from the formulation in the absence of passive release.

View Article and Find Full Text PDF

Purpose: MRI cell tracking can be used to monitor immune cells involved in the immunotherapy response, providing insight into the mechanism of action, temporal progression of tumor growth, and individual potency of therapies. To evaluate whether MRI could be used to track immune cell populations in response to immunotherapy, CD8 cytotoxic T cells, CD4 CD25 FoxP3 regulatory T cells, and myeloid-derived suppressor cells were labeled with superparamagnetic iron oxide particles.

Methods: Superparamagnetic iron oxide-labeled cells were injected into mice (one cell type/mouse) implanted with a human papillomavirus-based cervical cancer model.

View Article and Find Full Text PDF

There is currently a lack of biomarkers to help properly assess novel immunotherapies at both the preclinical and clinical stages of development. Recent work done by our group indicated significant volume changes in the vaccine draining right lymph node (RLN) volumes of mice that had been vaccinated with DepoVaxTM, a lipid-based vaccine platform that was developed to enhance the potency of peptide-based vaccines. These changes in lymph node (LN) volume were unique to vaccinated mice.

View Article and Find Full Text PDF