Publications by authors named "Cathryn A Hogarth"

Expression profiles and subcellular localisations of core Drosophila behaviour/human splicing (DBHS) proteins (PSPC1, SFPQ and NONO) and NEAT1, a long noncoding RNA (lncRNA), are investigated in developing and adult mouse testes. Core DBHS proteins are markers for the distinct subnuclear domain termed paraspeckles, while a long NEAT1 isoform scaffold facilitates paraspeckle nucleation. Paraspeckles contain many proteins (>40) and are broadly involved in RNA metabolism, including transcriptional regulation by protein sequestration, nuclear retention of A-to-I edited RNA transcripts to regulate translation and promoting survival during cellular stress.

View Article and Find Full Text PDF

Spermatogenesis in mammals is a very complex, highly organized process, regulated in part by testosterone and retinoic acid (RA). Much is known about how RA and testosterone signaling pathways independently regulate this process, but there is almost no information regarding whether these two signaling pathways directly interact and whether RA is crucial for steroidogenic cell function. This study uses a transgenic mouse line that expresses a dominant-negative form of RA receptor α (RAR-DN) and the steroidogenic cell-specific Cre mouse line, iCre, to generate male mice with steroidogenic cells unable to perform RA signaling.

View Article and Find Full Text PDF

Spermatogenesis in mammals occurs in a very highly organized manner within the seminiferous epithelium regulated by different cell types in the testis. Testosterone produced by Leydig cells regulates blood-testis barrier formation, meiosis, spermiogenesis, and spermiation. However, it is unknown whether Leydig cell function changes with the different stages of the seminiferous epithelium.

View Article and Find Full Text PDF

The onset of spermatogenesis occurs in response to retinoic acid (RA), the active metabolite of vitamin A. However, whether RA plays any role during establishment of the spermatogonial stem cell (SSC) pool is unknown. Because designation of the SSC population and the onset of RA signaling in the testis that induces differentiation have similar timing, this study asked whether RA influenced SSC establishment.

View Article and Find Full Text PDF

The PIWI-interacting RNA (piRNA) pathway is essential for retrotransposon silencing. In piRNA-deficient mice, L1-overexpressing male germ cells exhibit excessive DNA damage and meiotic defects. It remains unknown whether L1 expression simply highlights piRNA deficiency or actually drives the germ-cell demise.

View Article and Find Full Text PDF

Retinoic acid (RA), the active metabolite of vitamin A, is known to be required for the differentiation of spermatogonia. The first round of spermatogenesis initiates in response to RA and occurs in patches along the length of the seminiferous tubule. However, very little is known about the individual differentiating spermatogonial populations and their progression through the cell cycle due to the heterogeneous nature of the onset of spermatogenesis.

View Article and Find Full Text PDF

The core of the decision to commit to either oogenesis or spermatogenesis lies in the timing of meiotic entry. Primordial germ cells within the fetal ovary become committed to the female pathway prior to birth and enter meiosis during embryonic development. In the fetal testis, however, the germ cells are protected from this signal before birth and instead receive this trigger postnatally.

View Article and Find Full Text PDF

All-trans-retinoic acid (atRA) is the active metabolite of vitamin A. The liver is the main storage organ of vitamin A, but activation of the retinoic acid receptors (RARs) in mouse liver and in human liver cell lines has also been shown. AlthoughatRA treatment improves mitochondrial function in skeletal muscle in rodents, its role in modulating mitochondrial function in the liver is controversial, and little data are available regarding the human liver.

View Article and Find Full Text PDF

Perturbations in the vitamin A metabolism pathway could be a significant cause of male infertility, as well as a target toward the development of a male contraceptive, necessitating the need for a better understanding of how testicular retinoic acid (RA) concentrations are regulated. Quantitative analyses have recently demonstrated that RA is present in a pulsatile manner along testis tubules. However, it is unclear if the aldehyde dehydrogenase (ALDH) enzymes, which are responsible for RA synthesis, contribute to the regulation of these RA concentration gradients.

View Article and Find Full Text PDF

The active metabolite of vitamin A, retinoic acid (RA), is known to be essential for spermatogenesis. Changes to RA levels within the seminiferous epithelium can alter the development of male germ cells, including blocking their differentiation completely. Excess RA has been shown to cause germ cell death in both neonatal and adult animals, yet the cells capable of degrading RA within the testis have yet to be investigated.

View Article and Find Full Text PDF

all-trans retinoic acid (atRA), the active metabolite of vitamin A, is an essential signaling molecule. Specifically the concentrations of atRA are spatiotemporally controlled in target tissues such as the liver and the testes. While the enzymes of the aldehyde dehydrogenase 1A family (ALDH1A) are believed to control the synthesis of atRA, a direct relationship between altered ALDH1A activity and tissue atRA concentrations has never been shown.

View Article and Find Full Text PDF

Importin (IMP) superfamily members mediate regulated nucleocytoplasmic transport, which is central to key cellular processes. Although individual IMPα proteins exhibit dynamic synthesis and subcellular localization during cellular differentiation, including during spermatogenesis, little is known of how this affects cell fate. To investigate how IMPαs control cellular development, we conducted a yeast two-hybrid screen for IMPα2 cargoes in embryonic day 12.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of retinoid levels in the cyclic process of sperm production (spermatogenesis) in mammals, recognizing the importance of these fluctuations for male fertility.
  • The researchers used a special mouse model to measure changes in retinoic acid during different stages of germ cell maturation, finding that these fluctuations may trigger the spermatogenesis cycle.
  • This is the first study to directly quantify a retinoid gradient that influences cellular differentiation in adult tissues, providing new insights into how the seminiferous epithelium functions and is regulated.
View Article and Find Full Text PDF

The spermatogenic cycle describes the periodic development of germ cells in the testicular tissue. The temporal-spatial dynamics of the cycle highlight the unique, complex, and interdependent interaction between germ and somatic cells, and are the key to continual sperm production. Although understanding the spermatogenic cycle has important clinical relevance for male fertility and contraception, there are a number of experimental obstacles.

View Article and Find Full Text PDF

Retinoic acid (RA), the active metabolite of vitamin A, is required for spermatogenesis and many other biological processes. RA formation requires irreversible oxidation of retinal to RA by aldehyde dehydrogenase enzymes of the 1A family (ALDH1A). While ALDH1A1, ALDH1A2, and ALDH1A3 all form RA, the expression pattern and relative contribution of these enzymes to RA formation in the testis is unknown.

View Article and Find Full Text PDF

In the testis, a subset of spermatogonia retains stem cell potential, while others differentiate to eventually become spermatozoa. This delicate balance must be maintained, as defects can result in testicular cancer or infertility. Currently, little is known about the gene products and signaling pathways directing these critical cell fate decisions.

View Article and Find Full Text PDF

In all sexually reproducing organisms, cells of the germ line must transition from mitosis to meiosis. In mice, retinoic acid (RA), the extrinsic signal for meiotic initiation, activates transcription of Stra8, which is required for meiotic DNA replication and the subsequent processes of meiotic prophase. Here we report that RA also activates transcription of Rec8, which encodes a component of the cohesin complex that accumulates during meiotic S phase, and which is essential for chromosome synapsis and segregation.

View Article and Find Full Text PDF

Retinoic acid (RA) is required for the successful differentiation and meiotic entry of germ cells in the murine testis. The availability of RA to undifferentiated germ cells begins in a variable, uneven pattern during the first few days after birth and establishes the asynchronous pattern of germ cell differentiation in adulthood. It has been shown that synchronous spermatogenesis can be induced in 2 d postpartum mice, but not in adult mice, by treating vitamin A sufficient males with RA.

View Article and Find Full Text PDF

Purpose Of Review: Description of new evidence to support the model for how retinoic acid regulates spermatogonial differentiation, male meiosis and the cycle of the seminiferous epithelium.

Recent Findings: It has been known since the 1920s that vitamin A is essential for spermatogenesis. However, only recently has significant progress been made toward understanding how the active metabolite of vitamin A, retinoic acid, regulates spermatogenesis at multiple different differentiation steps, including the onset of meiosis.

View Article and Find Full Text PDF

The BDADs (bis-[dichloroacetyl]-diamines) are compounds that can inhibit spermatogenesis via blocking the metabolism of vitamin A. We utilized one specific BDAD, WIN 18,446, to manipulate the endogenous production of retinoic acid (RA) in the testis to further investigate the action of this compound on mammalian sperm production. Transient treatment of adult male mice with WIN 18,446 blocked spermatogonial differentiation and induced significant changes in the cycle of the seminiferous epithelium.

View Article and Find Full Text PDF

Immunohistochemistry is an important technique that uses specific antibodies to determine the cellular localization of proteins/antigens in highly complex organs and tissues. While most immunohistochemistry experiments target protein epitopes, nonprotein antigens including BrdU may also be detected. Briefly, tissues are fixed, processed, sectioned, and then probed by a primary antibody while preserving the integrity of the tissue and cellular morphology.

View Article and Find Full Text PDF

Prophase is a critical stage of meiosis, during which recombination-the landmark event of meiosis-exchanges information between homologous chromosomes. The intractability of mammalian gonads has limited our knowledge on genes or interactions between genes during this key stage. Microarray profiling of gonads in both sexes has generated genome-scale information.

View Article and Find Full Text PDF

The requirement for vitamin A in reproduction and development was first determined from studies of nutritional deficiencies. Subsequent research has shown that embryonic development and both male and female reproduction are modulated by retinoic acid (RA), the active form of vitamin A. Because RA is active in multiple developmental systems, its synthesis, transport, and degradation are tightly regulated in different tissues.

View Article and Find Full Text PDF

Although oral contraceptives have been available to women since the 1960s, contraceptive options for men have remained limited. Spermatogenesis relies on the active metabolite of vitamin A, retinoic acid, to drive spermatogonial differentiation and to allow the production of normal numbers of sperm. Recent evidence describes how the enzymes which control vitamin A metabolism in the testis could be targeted to generate effective male contraceptives; however, the detailed mechanism(s) regarding how vitamin A regulates normal spermatogenesis are still unknown.

View Article and Find Full Text PDF