Surgical resection is the primary treatment approach for patients with breast cancer. Despite optimal multimodal treatment, metastatic recurrence remains a risk. Surgery-mediated systemic inflammation and local tissue inflammation generate an immunosuppressive and wound-healing environment that may accelerate cancer recurrence and metastasis post-operatively.
View Article and Find Full Text PDFMucosal-associated invariant T (MAIT) cells are an abundant population of innate T cells that recognize bacterial ligands and play a key role in host protection against bacterial and viral pathogens. Upon activation, MAIT cells undergo proliferative expansion and increase their production of effector molecules such as cytokines. In this study, we found that both mRNA and protein abundance of the key metabolism regulator and transcription factor MYC was increased in stimulated MAIT cells.
View Article and Find Full Text PDFObesity underpins the development of numerous chronic diseases, such as type II diabetes mellitus. It is well established that obesity negatively alters immune cell frequencies and functions. Mucosal-associated invariant T (MAIT) cells are a population of innate T cells, which we have previously reported are dysregulated in obesity, with altered circulating and adipose tissue frequencies and a reduction in their IFN-γ production, which is a critical effector function of MAIT cells in host defense.
View Article and Find Full Text PDFUp to 49% of certain types of cancer are attributed to obesity, and potential mechanisms include overproduction of hormones, adipokines, and insulin. Cytotoxic immune cells, including natural killer (NK) cells and CD8 T cells, are important in tumor surveillance, but little is known about the impact of obesity on immunosurveillance. Here, we show that obesity induces robust peroxisome proliferator-activated receptor (PPAR)-driven lipid accumulation in NK cells, causing complete 'paralysis' of their cellular metabolism and trafficking.
View Article and Find Full Text PDFBackground: The regulation of endometrial inflammation has important consequences for the resumption of bovine fertility postpartum. All cows experience bacterial influx into the uterus after calving; however a significant proportion fail to clear infection leading to the development of cytological endometritis (CE) and compromised fertility. We hypothesised that early immunological changes could not only act as potential prognostic biomarkers for the subsequent development of disease but also shed light on the pathogenesis of endometritis in the postpartum dairy cow.
View Article and Find Full Text PDFBackground: All cows experience bacterial contamination and tissue injury in the uterus postpartum, instigating a local inflammatory immune response. However mechanisms that control inflammation and achieve a physiologically functioning endometrium, while avoiding disease in the postpartum cow are not succinctly defined. This study aimed to identify novel candidate genes indicative of inflammation resolution during involution in healthy beef cows.
View Article and Find Full Text PDFAfter calving, the bovine endometrium undergoes marked morphological and functional changes that are necessary for subsequent re-breeding. Regulation and integration of these key events are largely uncharacterised. Here, endometrial swabs and biopsies were taken at 15, 30 and 60 days postpartum (DPP) from 13 healthy primiparous cows, 10 of which subsequently conceived, with a view to characterising innate and inflammatory gene expression profiles.
View Article and Find Full Text PDF