Publications by authors named "Cathrine Jonsson"

Background: Whole-body bone scintigraphy is a clinically useful non-invasive and highly sensitive imaging method enabling detection of metabolic changes at an early stage of disease, often earlier than with conventional radiologic procedures. Bone scintigraphy is one of the most common nuclear medicine methods used worldwide. Therefore, it is important that the examination is implemented and performed in an optimal manner giving the patient added value in the subsequent care process.

View Article and Find Full Text PDF

The growing need and limited availability of generator produced Ga (T = 68 min) for PET has provided the impetus for alternative, high output, Ga production routes such as charge particle activation of enriched Zn using PET cyclotrons. The work presents a rapid production method for clinically useful Ga for radiolabeling. The focus is also to expand the production capacity of cyclotron solid target-produced Ga over generator produced and liquid solutions targets by using enriched Zn-foils that minimizes target preparation.

View Article and Find Full Text PDF

Introduction: The specific uptake size index (SUSI) of striatal FP-CIT uptake is independent of spatial resolution in the SPECT image, in contrast to the specific binding ratio (SBR). This suggests that the SUSI is particularly appropriate for multi-site/multi-camera settings in which camera-specific effects increase inter-subject variability of spatial resolution. However, the SUSI is sensitive to inter-subject variability of striatum size.

View Article and Find Full Text PDF

Background: Several automatic tools have been implemented for semi-quantitative assessment of brain [18]F-FDG-PET.

Objective: We aimed to head-to-head compare the diagnostic performance among three statistical parametric mapping (SPM)-based approaches, another voxel-based tool (i.e.

View Article and Find Full Text PDF

Background/objective: Idiopathic REM sleep behavior disorder (iRBD) often precedes Parkinson's disease (PD) and other alpha-synucleinopathies. The aim of the study is to investigate brain glucose metabolism of patients with RBD and PD by means of a multidimensional scaling approach, using18F-FDG-PET as a biomarker of synaptic function.

Methods: Thirty-six iRBD patients (64.

View Article and Find Full Text PDF

Purpose: The aim of this study was to verify the reliability and generalizability of an automatic tool for the detection of Alzheimer-related hypometabolic pattern based on a Support-Vector-Machine (SVM) model analyzing F-fluorodeoxyglucose (FDG) PET data.

Methods: The SVM model processed metabolic data from anatomical volumes of interest also considering interhemispheric asymmetries. It was trained on a homogeneous dataset from a memory clinic center and tested on an independent multicentric dataset drawn from the Alzheimer's Disease Neuroimaging Initiative.

View Article and Find Full Text PDF

We investigated the expression of the Alzheimer's disease-related metabolic brain pattern (ADRP) in F-FDG-PET scans of 44 controls, 27 patients with mild cognitive impairment (MCI) who did not convert to Alzheimer's disease (AD) after five or more years of clinical follow-up, 95 MCI patients who did develop AD dementia on clinical follow-up, and 55 patients with mild-to-moderate AD. The ADRP showed good sensitivity (84%) and specificity (86%) for MCI-converters when compared to controls, but limited specificity when compared to MCI non-converters (66%). Assessment of F-FDG-PET scans on a case-by-case basis using the ADRP may be useful for quantifying disease progression.

View Article and Find Full Text PDF

PET using 18F-2-fluoro-2-deoxy-D-glucose (FDG-PET) has been gradually introduced in the diagnostic clinical criteria of the most prevalent neurodegenerative diseases. Moreover, an increasing amount of literature has shown that the information provided by FDG-PET enhances the sensitivity of standard imaging biomarkers in less frequent disorders in which an early differential diagnosis can be of paramount relevance for patient management and outcome. Therefore emerging uses of FDG-PET may be important in prion diseases, autoimmune encephalitis (AE) and amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Purpose: Mild cognitive impairment (MCI) is a transitional pathological stage between normal ageing (NA) and Alzheimer's disease (AD). Although subjects with MCI show a decline at different rates, some individuals remain stable or even show an improvement in their cognitive level after some years. We assessed the accuracy of FDG PET in discriminating MCI patients who converted to AD from those who did not.

View Article and Find Full Text PDF

Brain connectivity has been assessed in several neurodegenerative disorders investigating the mutual correlations between predetermined regions or nodes. Selective breakdown of brain networks during progression from normal aging to Alzheimer disease dementia (AD) has also been observed. We implemented independent-component analysis of F-FDG PET data in 5 groups of subjects with cognitive states ranging from normal aging to AD-including mild cognitive impairment (MCI) not converting or converting to AD-to disclose the spatial distribution of the independent components in each cognitive state and their accuracy in discriminating the groups.

View Article and Find Full Text PDF

Background: When a bone is broken for any reason, it is important for the orthopaedic surgeon to know how bone healing is progressing. There has been resurgence in the use of the fluoride (F) ion to evaluate various bone conditions. This has been made possible by availability of positron emission tomography (PET)/CT hybrid scanners together with cyclotrons.

View Article and Find Full Text PDF

Background: [I]FP-CIT is a well-established radiotracer for the diagnosis of dopaminergic degenerative disorders. The European Normal Control Database of DaTSCAN (ENC-DAT) of healthy controls has provided age and gender-specific reference values for the [I]FP-CIT specific binding ratio (SBR) under optimised protocols for image acquisition and processing. Simpler reconstruction methods, however, are in use in many hospitals, often without implementation of attenuation and scatter corrections.

View Article and Find Full Text PDF

Background: Myocardial perfusion scintigraphy (MPS) is a clinically useful noninvasive imaging modality for diagnosing patients with suspected coronary artery disease. By utilizing gated MPS, the end diastolic volume (EDV) and end systolic volume (ESV) can be measured and the ejection fraction (EF) calculated, which gives incremental prognostic value compared with assessment of perfusion only. The aim of this study was to evaluate the inter-departmental variability of EF, ESV, and EDV during gated MPS in Sweden.

View Article and Find Full Text PDF

Objective: Sleep disturbances such as insomnia and nightmares are core components of post-traumatic stress disorder (PTSD), yet their neurobiological relationship is still largely unknown. We investigated brain alterations related to sleep disturbances in PTSD patients and controls by using both structural and functional neuroimaging techniques.

Method: Thirty-nine subjects either developing (n = 21) or not developing (n = 18) PTSD underwent magnetic resonance imaging and a symptom-provocation protocol followed by the injection of 99mTc-hexamethylpropyleneamineoxime.

View Article and Find Full Text PDF

Eighteen consecutive patients, treated with a Taylor Spatial Frame for complex tibia conditions, gave their informed consent to undergo Na(18)F(-) PET/CT bone scans. We present a Patlak-like analysis utilizing an approximated blood time-activity curve eliminating the need for blood aliquots. Additionally, standardized uptake values (SUV) derived from dynamic acquisitions were compared to this Patlak-like approach.

View Article and Find Full Text PDF

Background: Reducing scan-time while maintaining sufficient image quality is a common issue in nuclear medicine diagnostics. This matter can be addressed by different post-processing methods such as Pixon® image processing. The aim of the present study was to evaluate if a commercially available noise-reducing Pixon-algorithm applied on whole body bone scintigraphy acquired with half the standard scan-time could provide the same clinical information as full scan-time non-processed images.

View Article and Find Full Text PDF

Background: At fluorodeoxyglucose/positron emission tomography (FDG/PET) examinations, a generally increased uptake of the skeletal muscles is sometimes encountered. As the tracer distribution constitutes a 'zero-sum-game', the uptake of lesions as well as of normal tissues is reduced in these patients. This has to be considered at calculation of standardised uptake values (SUVs), especially at longitudinal examinations in the same patient.

View Article and Find Full Text PDF

Assessment of image analysis methods and computer software used in (99m) Tc-MAG3 dynamic renography is important to ensure reliable study results and ultimately the best possible care for patients. In this work, we present a national multicentre study of the quantification accuracy in (99m) Tc-MAG3 renography, utilizing virtual dynamic scintigraphic data obtained by Monte Carlo-simulated scintillation camera imaging of digital phantoms with time-varying activity distributions. Three digital phantom studies were distributed to the participating departments, and quantitative evaluation was performed with standard clinical software according to local routines.

View Article and Find Full Text PDF

Several studies have demonstrated altered brain functional connectivity in the resting state in depression. However, no study has investigated interregional networking in patients with persistent depressive disorder (PDD). The aim of this study was to assess differences in brain perfusion distribution and connectivity between large groups of patients and healthy controls.

View Article and Find Full Text PDF

Unlabelled: PET has been used to examine changes in neurotransmitter concentrations in the living brain. Pioneering PET studies on the dopamine system have used D2 and D3 receptor (D2/D3) antagonists such as (11)C-raclopride. However, more recently developed agonist radioligands have shown enhanced sensitivity to endogenous dopamine.

View Article and Find Full Text PDF

Monitoring and quantifying bone remodeling are of interest, for example, in correction osteotomies, delayed fracture healing pseudarthrosis, bone lengthening, and other instances. Seven patients who had operations to attach an Ilizarov-derived Taylor Spatial Frame to the tibia gave informed consent. Each patient was examined by Na(18)F PET/CT twice, at approximately six weeks and three months after the operation.

View Article and Find Full Text PDF

Unlabelled: Diagnosis of new bone growth in patients with compound tibia fractures or deformities treated using a Taylor spatial frame is difficult with conventional radiography because the frame obstructs the images and creates artifacts. The use of Na(18)F PET studies may help to eliminate this difficulty.

Methods: Patients were positioned on the pallet of a clinical PET/CT scanner and made as comfortable as possible with their legs immobilized.

View Article and Find Full Text PDF

The purpose of this study was to investigate in vivo verification of radiation treatment with high energy photon beams using PET/CT to image the induced positron activity. The measurements of the positron activation induced in a preoperative rectal cancer patient and a prostate cancer patient following 50 MV photon treatments are presented. A total dose of 5 and 8 Gy, respectively, were delivered to the tumors.

View Article and Find Full Text PDF

Background: The influence of the blood glucose level on the tracer uptake of normal tissues at [18F]-2-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) was retrospectively studied in examinations in clinical patients.

Methods: Five hundred examinations were evaluated in retrospect. The inclusion criteria were studies with a normal or near-normal FDG distribution.

View Article and Find Full Text PDF

Background: The purpose of this work was to reveal the research interest value of positron emission tomography (PET) imaging in visualizing the induced tissue activity post high-energy photon radiation treatment. More specifically, the focus was on the possibility of retrieving data such as tissue composition and physical half-lives from dynamic PET acquisitions, as positron-emitting radionuclides such as 15O, 11C, and 13N are produced in vivo during radiation treatment with high-energy photons (>15 MeV). The type, amount, and distribution of induced positron-emitting radionuclides depend on the irradiated tissue cross section, the photon spectrum, and the possible perfusion-driven washout.

View Article and Find Full Text PDF