The objective of this study was to develop and explore a novel CD133-targeting immunotoxin (IT) for use in combination with the endosomal escape method photochemical internalization (PCI). scFvCD133/rGelonin was recombinantly constructed by fusing a gene (scFvCD133) encoding the scFv that targets both non-glycosylated and glycosylated forms of both human and murine CD133/prominin-1 to a gene encoding the ribosome-inactivating protein (RIP) gelonin (rGelonin). RIP-activity was assessed in a cell-free translation assay.
View Article and Find Full Text PDFCurrently the greatest challenge in oncology is the lack of homogeneity of the lesions where different cell components respond differently to treatment. There is growing consensus that monotherapies are insufficient to eradicate the disease and there is an unmet need for more potent combinatorial treatments. We have previously shown that hypericin photodynamic therapy (HYP-PDT) triggers electron transport chain (ETC) inhibition in cell mitochondria.
View Article and Find Full Text PDFBackground: Development of resistance to 5-fluorouracil (5-FU) is a major problem in treatment of various cancers including pancreatic cancer. In this study, we reveal important resistance mechanisms and photochemical strategies to overcome 5-FU resistance in pancreatic adenocarcinoma.
Methods: 5-FU resistant (5-FUR), epithelial-to-mesenchymal-like sub-clones of the wild type pancreatic cancer cell line Panc03.
The low curative response to current treatment regimens for most soft tissue sarcomas indicates a strong need for alternative treatment strategies and predictive markers for treatment outcome. PCI (photochemical internalization) is a novel treatment strategy to translocate drugs into cytosol that otherwise would have been degraded in lysosomes. Two highly geno-and phenotypically different uterine and vulvar leiomyosarcoma cell lines, MES-SA and SK-LMS-1, were treated with bleomycin (BLM) activated by PCI (PCI).
View Article and Find Full Text PDFHere we report on the induction of resistance to photodynamic therapy (PDT) in the ABCG2-high human breast cancer cell line MA11 after repetitive PDT, using either Pheophorbide A (PhA) or di-sulphonated meso-tetraphenylchlorin (TPCS) as photosensitizer. Resistance to PhA-PDT was associated with enhanced expression of the efflux pump ABCG2. TPCS-PDT-resistance was neither found to correspond with lower TPCS-accumulation nor reduced generation of reactive oxygen species (ROS).
View Article and Find Full Text PDFThe diverse responses of different cancers to treatments such as photodynamic therapy of cancer (PDT) have fueled a growing need for reliable predictive markers for treatment outcome. In the present work we have studied the differential response of two phenotypically and genotypically different breast adenocarcinoma cell lines, MCF7 and MDA-MB-231, to hypericin PDT (HYP-PDT). MDA-MB-231 cells were 70% more sensitive to HYP PDT than MCF7 cells at LD.
View Article and Find Full Text PDFTamoxifen is not only considered a very potent chemotherapeutic adjuvant for estrogen receptor positive breast cancers but also a very good chemo-preventive drug. Recently, there has been a rising amount of evidence for a nongenomic cytotoxicity of tamoxifen, even in estrogen receptor negative cells, which has greatly confounded researchers. Clinically, the side effects of tamoxifen can be very serious, ranging from liver steatosis to cirrhosis, tumorigenesis, or onset of porphyrias.
View Article and Find Full Text PDFPhotochem Photobiol Sci
August 2015
Resistance to chemotherapy, molecular targeted therapy as well as radiation therapy is a major obstacle for cancer treatment. Cancer resistance may be exerted through multiple different mechanisms which may be orchestrated as observed in multidrug resistance (MDR). Cancer resistance may be intrinsic or acquired and often leaves patients without any treatment options.
View Article and Find Full Text PDFDespite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs.
View Article and Find Full Text PDFThe cancer stem cell (CSC) marker CD133 is an attractive target to improve antitumor therapy. We have used photochemical internalization (PCI) for the endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin (PCIAC133-saporin). PCI employs an endocytic vesicle-localizing photosensitizer, which generates reactive oxygen species upon light-activation causing a rupture of the vesicle membranes and endosomal escape of entrapped drugs.
View Article and Find Full Text PDFWe have used the site specific and light-depended drug delivery method photochemical internalization (PCI) to release an immunotoxin (IT), targeting the CD44 receptor, into the cytosol of target cells. The IT consisted of a pan CD44 mAb (clone IM7) bound to the ribosome inactivating protein (RIP) saporin by a biotin-streptavidin linker named IM7-saporin. PCI is based upon photosensitizing compounds localized in the membrane of endosomes and lysosomes causing membrane rupture upon illumination followed by release of the IT into the cytosol.
View Article and Find Full Text PDFA wide range of anti-cancer therapies have been shown to induce resistance upon repetitive treatment and such adapted resistance may also cause cross-resistance to other treatment modalities. We here show that MES-SA/Dx5 cells with adapted resistance to doxorubicin (DOX) are cross-resistant to photodynamic therapy (PDT). A DOX-induced increased expression of the reactive oxygen species (ROS)-scavenging proteins glutathione peroxidase (GPx) 1 and GPx4 in MES-SA/Dx5 cells was indicated as the mechanism of resistance to PDT in line with the reduction in PDT-generated ROS observed in this cell line.
View Article and Find Full Text PDF