Slowing the rate of carbohydrate digestion leads to low postprandial glucose and insulin responses, which are associated with reduced risk of type 2 diabetes. There is increasing evidence that food structure plays a crucial role in influencing the bioaccessibility and digestion kinetics of macronutrients. The aims of this study were to compare the effects of two hummus meals, with different degrees of cell wall integrity, on postprandial metabolic responses in relation to the microstructural and rheological characteristics of the meals.
View Article and Find Full Text PDFBackground: Dietary intake of pulses is associated with beneficial effects on body weight management and cardiometabolic health, but some of these effects are now known to depend on integrity of plant cells, which are usually disrupted by flour milling. Novel cellular flours preserve the intrinsic dietary fiber structure of whole pulses and provide a way to enrich preprocessed foods with encapsulated macronutrients.
Objectives: This study aimed to determine the effects of replacing wheat flour with cellular chickpea flour on postprandial gut hormones, glucose, insulin, and satiety responses to white bread.
The cell structure and low glycaemic benefits of pulses are compromised by conventional flour-milling. Cellular chickpea powders ('CCPs') are a new alternative to pulse flours. Here we investigated the in vitro bioaccessibility of essential amino acids ('EAAs') from CCP-enriched bread products and determined the effect of their consumption on serum amino acid responses in healthy humans (n = 20, randomised cross-over design).
View Article and Find Full Text PDFBackground: Starch is a principal dietary source of digestible carbohydrate and energy. Glycaemic and insulinaemic responses to foods containing starch vary considerably and glucose responses to starchy foods are often described by the glycaemic index (GI) and/or glycaemic load (GL). Low GI/GL foods are beneficial in the management of cardiometabolic disorders (e.
View Article and Find Full Text PDFHigh-amylose () mutant wheat has potential to be low-glycaemic compared to conventional wheat; however, the effects of bread made from wheat flour on glycaemic response and product quality require investigation. We report the impact of white bread made from wheat flour on starch digestibility and product quality, and on postprandial glycaemia , compared to an isoglucidic wild-type (WT) control white bread. Starch in bread was ∼20% less susceptible to amylolysis leading to ∼15% lower glycaemic response measured , compared to the WT control bread, without major effects on bread appearance or texture, measured instrumentally.
View Article and Find Full Text PDFPositive health effects of dietary fibre have been established; however, the underpinning mechanisms are not well understood. Plant cell walls are the predominant source of fibre in the diet. They encapsulate intracellular starch and delay digestive enzyme ingress, but food processing can disrupt the structure.
View Article and Find Full Text PDFThe global rise in obesity and type 2 diabetes has generated significant interest in regulating the glycaemic impact of staple foods. Wheat breads (white or wholemeal) are popular staples, but have a high-glycaemic index, due to the highly digestible wheat starch. Reducing the glycaemic potency of white bread is challenging because the bread-making conditions are mostly conducive to starch gelatinisation.
View Article and Find Full Text PDFStarch is present in many prepared 'ready-meals' that have undergone processing and/or storage in frozen or chilled state. Hydrothermal processing greatly increases starch digestibility and postprandial glycaemia. Effects of different heating/drying and cooling regimes on amylolysis have received little attention.
View Article and Find Full Text PDFMycoprotein is the fungal biomass obtained by the fermentation of Fusarium venenatum, whose intake has been shown to lower blood lipid levels. This in vitro study aimed to understand the mechanisms whereby mycoprotein can influence lipid digestion by reducing lipolysis and binding to bile salts. Mycoprotein at 30 mg mL concentration significantly reduced lipolysis after 60 min of simulated intestinal digestion with oil-in-water emulsion (P < 0.
View Article and Find Full Text PDFElevated postprandial glucose (PPG) is a significant risk factor for non-communicable diseases globally. Currently, there is a limited understanding of how starch structures within a carbohydrate-rich food matrix interact with the gut luminal environment to control PPG. Here, we use pea seeds (Pisum sativum) and pea flour, derived from two near-identical pea genotypes (BC1/19RR and BC1/19rr) differing primarily in the type of starch accumulated, to explore the contribution of starch structure, food matrix and intestinal environment to PPG.
View Article and Find Full Text PDFThe aim of this study was to investigate the effect of preparation method and particle size on digestion of starch in fresh and dry pasta types. Pasta samples were boiled, refrigerated and re-heated, with samples collected after each stage, and then prepared as small (2 mm) and large (5 mm) particles for subsequent starch digestibility testing and logarithm of slope analyses. There were significant main effects of particle size (F = 568.
View Article and Find Full Text PDFMany carbohydrate foods contain starch that is rapidly digested and elicits a high Glycaemic Index. A legume ingredient (PulseON®) rich in Type 1 resistant starch (RS1) was recently developed; however, its potential as a functional ingredient when processed into a food product required assessment. PulseON® was used to replace 0, 25, 50, 75, and 100% of the wheat flour in a savoury biscuit recipe.
View Article and Find Full Text PDFCell walls are important structural components of plants, affecting both the bioaccessibility and subsequent digestibility of the nutrients that plant-based foods contain. These supramolecular structures are composed of complex heterogeneous networks primarily consisting of cellulose, and hemicellulosic and pectic polysaccharides. The composition and organization of these different polysaccharides vary depending on the type of plant tissue, imparting them with specific physicochemical properties.
View Article and Find Full Text PDFRefined starchy foods are usually rapidly digested, leading to poor glycaemic control, but not all starchy foods are the same. Complex carbohydrates like resistant starch (RS) have been shown to reduce the metabolic risk factors for chronic diseases such as hyperglycaemia and overweight. The aim of the project was to develop a semolina-based food made from a starch branching enzyme II (sbeIIa/b-AB) durum wheat mutant with a high RS content and to measure its glycaemic index using a double-blind randomised pilot study.
View Article and Find Full Text PDFThere is currently great interest in increasing provisions of healthier carbohydrate foods, particularly those that possess a low Glycaemic Index (GI) when measured in vivo. The metabolic response to many starch-rich foods is driven largely by differences in the rate and extent of starch amylolysis. Enzyme-kinetic parameters obtained from high-throughput in vitro amylolysis assays therefore have potential for rapid prediction of GI for starch-rich foods.
View Article and Find Full Text PDFThis study describes the impact of crop genetics and processing in two pea lines (Pisum sativum L.) on starch digestion kinetics. Mutation at the rugosus (r) locus leads to wrinkled pea seeds, a reduction in starch content and a lower extent of in vitro starch digestibility.
View Article and Find Full Text PDFThis study compares and models of lipid digestion from almond particles within a complex food matrix (muffins) investigating whether the cell-wall barrier regulates the bioaccessibility of nutrients within this matrix. Muffins containing small (AF) or large (AP) particles of almond were digested in triplicate using an dynamic gastric model (DGM, 1 h) followed by a static duodenal digestion (8 h). AF muffins had 97.
View Article and Find Full Text PDFRetrograded starch is known to be resistant to digestion. We used enzyme kinetic experiments to examine how retrogradation of starch affects amylolysis catalysed by porcine pancreatic amylase. Parallel studies employing differential scanning calorimetry, infra red spectroscopy, X-ray diffraction and NMR spectroscopy were performed to monitor changes in supramolecular structure of gelatinised starch as it becomes retrograded.
View Article and Find Full Text PDFThe positive effects of dietary fibre on health are now widely recognised; however, our understanding of the mechanisms involved in producing such benefits remains unclear. There are even uncertainties about how dietary fibre in plant foods should be defined and analysed. This review attempts to clarify the confusion regarding the mechanisms of action of dietary fibre and deals with current knowledge on the wide variety of dietary fibre materials, comprising mainly of NSP that are not digested by enzymes of the gastrointestinal (GI) tract.
View Article and Find Full Text PDFInfrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves.
View Article and Find Full Text PDFThe aim of this study was to investigate the role of the plant food matrix in influencing the extent of starch gelatinisation during hydrothermal processing, and its implications for starch digestibility. Differential scanning calorimetry (DSC) was used to provide a detailed examination of the gelatinisation behaviour of five distinct size fractions (diameters <0.21 to 2.
View Article and Find Full Text PDFBackground: Cereal crops, particularly wheat, are a major dietary source of starch, and the bioaccessibility of starch has implications for postprandial glycemia. The structure and properties of plant foods have been identified as critical factors in influencing nutrient bioaccessibility; however, the physical and biochemical disassembly of cereal food during digestion has not been widely studied.
Objectives: The aims of this study were to compare the effects of 2 porridge meals prepared from wheat endosperm with different degrees of starch bioaccessibility on postprandial metabolism (e.
Studying starch amylolysis kinetics in vitro is valuable for predicting the postprandial glycaemic response to starch intake. Prediction of starch amylolysis behaviour is challenging however, because of the many physico-chemical factors which influence amylolysis. The Logarithm of Slope (LOS) method for analysis of digestibility curves using first-order enzyme kinetics can identify and quantify nutritionally important starch fractions.
View Article and Find Full Text PDF