Mesoporous silica-based nanoparticles are generally accepted as a potential platform for drug loading with a lot of advantages, except for their complex purification procedures and structures that are difficult to decompose. In this work, biocompatible hyperbranched polyglycerol is introduced to synthesize mesoporous silica nanoparticles (MSNs). The materials possess good biocompatibility, controlled release, and biodegradability.
View Article and Find Full Text PDFThe development of safe and effective delivery vectors is a great challenge for the medicinal application of RNA interference (RNAi). In this study, we aimed to develop new synthetic transfection agents based on dendritic polyglycercol (dPG), which has shown great biocompatibility in several biomaterial applications. Histidine and aromatic amino acids were conjugated to the amine-terminated dPGs through amide bonds.
View Article and Find Full Text PDFThe success of siRNA-based therapeutics highly depends on a safe and efficient delivery of siRNA into the cytosol. In this study, we post-modified the primary amines on dendritic polyglycerolamine (dPG-NH2) with different ratios of two relevant amino acids, namely, arginine (Arg) and histidine (His). To investigate the effects from introducing Arg and His to dPG, the resulting polyplexes of amino acid functionalized dPG-NH2s (AAdPGs)/siRNA were evaluated regarding cytotoxicity, transfection efficiency, and cellular uptake.
View Article and Find Full Text PDF