Protonolysis of the dimethylrhenium(III) compound Cp(PMe(3))(2)Re(CH(3))(2) (3) led to formation of the highly reactive hydridorhenium methylidene compound [Cp(PMe(3))(2)Re(CH(2))(H)][OTf] (4), which was characterized spectroscopically at low temperature. Although 4 decomposed above -30 degrees C, reactivity studies performed at low temperature indicated it was in equilibrium with the coordinatively unsaturated methylrhenium complex [Cp(PMe(3))(2)Re(CH(3))][OTf] (2). Methylidene complex 4 was found to react with PMe(3) to afford [Cp(PMe(3))(3)Re(CH(3))][OTf] (6) and with chloride anion to give Cp(PMe(3))(2)Re(Me)Cl (7).
View Article and Find Full Text PDFA mechanistic study of the stoichiometric and catalytic H/D exchange reactions involving cationic iridium complexes is presented. Strong evidence suggests that both stoichiometric and catalytic reactions proceed via a monohydrido-iridium species. Stoichiometric deuterium incorporation reactions introduce multiple deuterium atoms into the organic products when aryliridium compounds CpPMe(3)Ir(C(6)H(4)X)(OTf) (X = H, o-CH(3), m-CH(3), p-CH(3)) react with D(2).
View Article and Find Full Text PDF[reaction: see text] Ir(III) complex [Cp(PMe(3))IrMe(CH(2)Cl(2))][BAr(f)] (1) was used to introduce deuterium stoichiometrically into substituted naphthalene/benzene templates and several "drug-like" entities. The exchange process is tolerant of a wide array of functional groups. Labeling of warfarin using subatmospheric pressures of T(2) led to specific activities and total activities rivaling current functional group directed tritium labeling methods.
View Article and Find Full Text PDFA detailed mechanistic study of arene C [bond] H activation in CH(2)Cl(2) solution by Cp(L)IrMe(X) [L = PMe(3), P(OMe)(3); X = OTf, (CH(2)Cl(2))BAr(f); (BAr(f) = B[3,5-C(6)H(3)(CF(3))(2)](4))(-)] is presented. It was determined that triflate dissociation in Cp(L)IrMe(OTf), to generate tight and/or solvent-separated ion pairs containing a cationic iridium complex, precedes C [bond] H activation. Consistent with the ion-pair hypothesis, the rate of arene activation by Cp(L)IrMe(OTf) is unaffected by added external triflate salts, but the rate is strongly dependent upon the medium.
View Article and Find Full Text PDF