Acoustic recordings of the environment can produce species presence-absence data for characterizing populations of sound-producing wildlife over multiple spatial scales. If a species is present at a site but does not vocalize during a scheduled audio recording survey, researchers may incorrectly conclude that the species is absent ("false negative"). The risk of false negatives is compounded when audio devices have sampling constraints, do not record continuously, and must be manually scheduled to operate at pre-selected times of day, particularly when research programs target multiple species with acoustic availability that varies across temporal conditions.
View Article and Find Full Text PDFAutomated acoustic monitoring of wildlife has been used to characterize populations of sound-producing species across large spatial scales. However, false negatives and false positives produced by automated detection systems can compromise the utility of these data for researchers and land managers, particularly for research programs endeavoring to describe colonization and extinction dynamics that inform land use decision-making. To investigate the suitability of automated acoustic monitoring for dynamic occurrence models, we simulated underlying occurrence dynamics, calling patterns, and the automated acoustic detection process for a hypothetical species under a range of scenarios.
View Article and Find Full Text PDF