Non-genotoxic carcinogens (NGCs) promote tumor growth by altering gene expression, which ultimately leads to cancer without directly causing a change in DNA sequence. As a result NGCs are not detected in mutagenesis assays. While there are proposed biomarkers of carcinogenic potential, the definitive identification of non-genotoxic carcinogens still rests with the rat and mouse long-term bioassay.
View Article and Find Full Text PDFHigh-resolution (1)H NMR spectroscopy is frequently used in the field of metabolomics to assess the metabolites found in biofluids or tissue extracts to define a metabolic profile that describes a given biological process. In this study, we aimed to increase the utility of NMR-based metabolomics by using advanced Bayesian modeling of the time-domain high-resolution 1D NMR free induction decay (FID). The improvement over traditional nonparametric binning is twofold and associated with enhanced resolution of the analysis and automation of the signal processing stage.
View Article and Find Full Text PDFBackground: Non-genotoxic carcinogens are notoriously difficult to identify as they do not damage DNA directly and have diverse modes of action, necessitating long term in vivo studies. The early effects of the classic rodent non-genotoxic hepatocarcinogen phenobarbital have been investigated in the Fisher rat using a combination of metabolomics and transcriptomics, to investige early stage mechanistic changes that are predictive of longer term pathology.
Results: Liver and blood plasma were profiled across 14 days, and multivariate statistics used to identify perturbed pathways.
We present here a definitive metabonomic analysis in order to detect novel biomarker and metabolite information, implicating specific putative protein targets in the toxicological mechanism of bromobenzene-induced centrilobular hepatic necrosis. Male Han-Wistar rats were dosed with bromobenzene (1.5 g/kg, n = 25) and blood plasma, urine and liver samples were collected for NMR and magic angle spinning (MAS) NMR spectroscopy at various time-points postdose, with histopathology and clinical pathology performed in parallel.
View Article and Find Full Text PDFThe present study was designed to provide further information about the relevance of raised urinary levels of N-methylnicotinamide (NMN), and/or its metabolites N-methyl-4-pyridone-3-carboxamide (4PY) and N-methyl-2-pyridone-3-carboxamide (2PY), to peroxisome proliferation by dosing rats with known peroxisome proliferator-activated receptor alpha (PPARalpha) ligands [fenofibrate, diethylhexylphthalate (DEHP) and long-chain fatty acids (LCFA)] and other compounds believed to modulate lipid metabolism via PPARalpha-independent mechanisms (simvastatin, hydrazine and chlorpromazine). Urinary NMN was correlated with standard markers of peroxisome proliferation and serum lipid parameters with the aim of establishing whether urinary NMN could be used as a biomarker for peroxisome proliferation in the rat. Data from this study were also used to validate a previously constructed multivariate statistical model of peroxisome proliferation (PP) in the rat.
View Article and Find Full Text PDFWe present here the potential of an integrated metabonomic strategy to deconvolute the biofluid metabolic signatures in experimental animals following multiple organ toxicities, using the well-known hepato- and nephrotoxin, thioacetamide. Male Han-Wistar rats were dosed with thioacetamide (150 mg/kg, n = 25), and urine, plasma, liver, and kidney samples were collected postdose for conventional NMR and magic angle spinning (MAS) NMR spectroscopy. These data were correlated with histopathology and plasma clinical chemistry collected at all time points.
View Article and Find Full Text PDFA previous report of this work (Ringeissen et al. 2003) described the use of nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistical data analysis (MVDA) to identify novel biomarkers of peroxisome proliferation (PP) in Wistar Han rats. Two potential biomarkers of peroxisome proliferation in the rat were described, N-methylnicotinamide (NMN) and N-methyl-4-pyridone-3-carboxamide (4PY).
View Article and Find Full Text PDFAmiodarone was given to male Sprague-Dawley rats at a dose of 150 mg kg(-1) day(-1) for 7 consecutive days to induce phospholipidosis in the lungs of treated rats. Amiodarone was given alone or concurrently with phenobarbitone. Animals given amiodarone had raised total phospholipid in serum, lung and lymphocytes, and elevated lyso(bis)phosphatidic acid (LBPA) in all tissues.
View Article and Find Full Text PDFFor almost two decades, 1H-NMR spectroscopy has been used as an 'open' system to study the temporal changes in the biochemical composition of biofluids, including urine, in response to adverse toxic events. Many of these in vivo studies have reported changes in individual metabolites and patterns of metabolites that correlated with toxicological changes. However, many of the proposed novel biomarkers are common to a number of different types of toxicity.
View Article and Find Full Text PDFBiomarkers
June 2004
This study identified two potential novel biomarkers of peroxisome proliferation in the rat. Three peroxisome proliferator-activated receptor (PPAR) ligands, chosen for their high selectivity towards the PPARalpha, -delta and -gamma subtypes, were given to rats twice daily for 7 days at doses known to cause a pharmacological effect or peroxisome proliferation. Fenofibrate was used as a positive control.
View Article and Find Full Text PDFA novel and relatively simple analytical method for the separation, characterisation and semi-quantitation of phospholipids (PLs) from extracts of complex biological samples has been developed. This methodology allows PL extracts from cells and tissues to be analysed by liquid chromatography (LC) coupled to electrospray ionisation mass spectrometry (ESI-MS). Complex mixtures of PLs were separated on a high-performance liquid chromatography (HPLC) system using 0.
View Article and Find Full Text PDFBiofluid 1H NMR spectroscopy has been assessed as a tool for toxicological investigations for almost two decades, with most studies focussing on urinary changes. This study has examined variations in the 1H NMR spectroscopy spectra of plasma collected from control rats at different times of the day. The collection, preparation and storage of samples were optimised and potential sources of variation in samples taken for toxicology studies identified.
View Article and Find Full Text PDFThe metabolite profiles from livers of toxin-treated rats were investigated using high resolution 1H NMR spectroscopy of aqueous (acetonitrile/water), lipidic (chloroform/methanol) extracts and magic angle spinning (MAS)-NMR spectroscopy of intact tissue. Rats were treated with the model cholestatic hepatotoxin, alpha-naphthylisothiocyanate (ANIT, 150 mg/kg) and NMR spectra of liver were analysed using principal components analysis (PCA) to extract novel toxicity biomarker information. 1H NMR spectra of control aqueous extracts showed signals from a range of organic acids and bases, amino acids, sugars, and glycogen.
View Article and Find Full Text PDFMethionine dependence has been reported in tumour cells and suggested as a possible target for chemotherapeutic drugs. The underlying defect has not been extensively researched, nor have levels of sulphur amino acids been examined in these cells. This study compared two rat liver tumour cell lines.
View Article and Find Full Text PDF