Background: ApoE4, the most significant genetic risk factor for late-onset Alzheimer's disease (AD), sequesters a pro-synaptogenic Reelin receptor, Apoer2, in the endosomal compartment and prevents its normal recycling. In the adult brain, Reelin potentiates excitatory synapses and thereby protects against amyloid-β toxicity. Recently, a gain-of-function mutation in Reelin that is protective against early-onset AD has been described.
View Article and Find Full Text PDFApoE4, the most significant genetic risk factor for late-onset Alzheimer's disease (AD), sequesters a pro-synaptogenic Reelin receptor, Apoer2, in the endosomal compartment and prevents its normal recycling. In the adult brain, Reelin potentiates excitatory synapses and thereby protects against amyloid-β toxicity. Recently, a gain-of-function mutation in Reelin that is protective against early-onset AD has been described.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disease marked by the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles. Aβ oligomers cause synaptic dysfunction early in AD by enhancing long-term depression (LTD; a paradigm for forgetfulness) via metabotropic glutamate receptor (mGluR)-dependent regulation of striatal-enriched tyrosine phosphatase (STEP). Reelin is a neuromodulator that signals through ApoE (apolipoprotein E) receptors to protect the synapse against Aβ toxicity (Durakoglugil et al.
View Article and Find Full Text PDFDefective lysosomal function defines many neurodegenerative diseases, such as neuronal ceroid lipofuscinoses (NCL) and Niemann-Pick type C (NPC), and is implicated in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD-TDP) with progranulin (PGRN) deficiency. Here, we show that PGRN is involved in lysosomal homeostasis and lipid metabolism. PGRN deficiency alters lysosome abundance and morphology in mouse neurons.
View Article and Find Full Text PDFThe biological fates of the key initiator of Alzheimer's disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses.
View Article and Find Full Text PDFOver half a century ago, D. S. Falconer first reported a mouse with a reeling gate.
View Article and Find Full Text PDFKey Points: Synaptic transmission is mediated by the release of neurotransmitters from synaptic vesicles in response to stimulation or through the spontaneous fusion of a synaptic vesicle with the presynaptic plasma membrane. There is growing evidence that synaptic vesicles undergoing spontaneous fusion versus those fusing in response to stimuli are functionally distinct. In this study, we acutely probe the effects of intravesicular free radical generation on synaptic vesicles that fuse spontaneously or in response to stimuli.
View Article and Find Full Text PDFUnlabelled: Alzheimer's disease (AD) is the most common form of dementia in individuals over the age of 65 years. The most prevalent genetic risk factor for AD is the ε4 allele of apolipoprotein E (ApoE4), and novel AD treatments that target ApoE are being considered. One unresolved question in ApoE biology is whether ApoE is necessary for healthy brain function.
View Article and Find Full Text PDFThe multimodular glycoprotein Reelin controls neuronal migration and synaptic transmission by binding to apolipoprotein E receptor 2 (Apoer2) and very low density lipoprotein receptor (Vldlr) on neurons. In the periphery, Reelin is produced by the liver, circulates in blood, and promotes thrombosis and hemostasis. To investigate if Reelin influences atherogenesis, we studied atherosclerosis-prone low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice in which we inducibly deleted Reelin either ubiquitously or only in the liver, thus preventing the production of circulating Reelin.
View Article and Find Full Text PDFThe earliest clinical manifestation of Alzheimer's disease (AD) is cognitive impairment caused by synaptic dysfunction. ApoE4, the primary risk factor for late‐onset AD, disrupts synaptic homeostasis by impairing synaptic ApoE receptor trafficking. Alternative splicing of ApoE receptor‐2 (Apoer2) maintains synaptic homeostasis.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a currently incurable neurodegenerative disorder and is the most common form of dementia in people over the age of 65 years. The predominant genetic risk factor for AD is the ε4 allele encoding apolipoprotein E (ApoE4). The secreted glycoprotein Reelin enhances synaptic plasticity by binding to the multifunctional ApoE receptors apolipoprotein E receptor 2 (Apoer2) and very low density lipoprotein receptor (Vldlr).
View Article and Find Full Text PDFApoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice.
View Article and Find Full Text PDFSynaptic vesicles loaded with neurotransmitters fuse with the plasma membrane to release their content into the extracellular space, thereby allowing neuronal communication. The membrane fusion process is mediated by a conserved set of SNARE proteins: vesicular synaptobrevin and plasma membrane syntaxin and SNAP-25. Recent data suggest that the fusion process may be subject to regulation by local lipid metabolism.
View Article and Find Full Text PDFCholesterol is a prominent component of nerve terminals. To examine cholesterol's role in central neurotransmission, we treated hippocampal cultures with methyl-beta-cyclodextrin, which reversibly binds cholesterol, or mevastatin, an inhibitor of cholesterol biosynthesis, to deplete cholesterol. We also used hippocampal cultures from Niemann-Pick type C1-deficient mice defective in intracellular cholesterol trafficking.
View Article and Find Full Text PDF