Background: Organoids are 3-dimensional experimental models that summarize the anatomical and functional structure of an organ. Although a promising experimental model for precision medicine, patient-derived tumor organoids (PDTOs) have currently been developed only for a fraction of tumor types.
Results: We have generated the first multi-omic dataset (whole-genome sequencing [WGS] and RNA-sequencing [RNA-seq]) of PDTOs from the rare and understudied pulmonary neuroendocrine tumors (n = 12; 6 grade 1, 6 grade 2) and provide data from other rare neuroendocrine neoplasms: small intestine (ileal) neuroendocrine tumors (n = 6; 2 grade 1 and 4 grade 2) and large-cell neuroendocrine carcinoma (n = 5; 1 pancreatic and 4 pulmonary).
Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites.
View Article and Find Full Text PDFBackground: People with cancer experience high rates of venous thromboembolism (VTE). Additionally, risk of subsequent cancer is increased in people experiencing their first VTE. The causal mechanisms underlying this association are not completely understood, and it is unknown whether VTE is itself a risk factor for cancer.
View Article and Find Full Text PDFMalignant pleural mesothelioma (MPM) is an aggressive cancer with rising incidence and challenging clinical management. Through a large series of whole-genome sequencing data, integrated with transcriptomic and epigenomic data using multiomics factor analysis, we demonstrate that the current World Health Organization classification only accounts for up to 10% of interpatient molecular differences. Instead, the MESOMICS project paves the way for a morphomolecular classification of MPM based on four dimensions: ploidy, tumor cell morphology, adaptive immune response and CpG island methylator profile.
View Article and Find Full Text PDFBackground: Malignant pleural mesothelioma (MPM) is a rare understudied cancer associated with exposure to asbestos. So far, MPM patients have benefited marginally from the genomics medicine revolution due to the limited size or breadth of existing molecular studies. In the context of the MESOMICS project, we have performed the most comprehensive molecular characterization of MPM to date, with the underlying dataset made of the largest whole-genome sequencing series yet reported, together with transcriptome sequencing and methylation arrays for 120 MPM patients.
View Article and Find Full Text PDFSomatic mutations in the () promoter regions are frequent events in urothelial cancer (UC) and their detection in urine (supernatant cell-free DNA or DNA from exfoliated cells) could serve as putative non-invasive biomarkers for UC detection and monitoring. However, detecting these tumor-borne mutations in urine requires highly sensitive methods, capable of measuring low-level mutations. In this study, we developed sensitive droplet digital PCR (ddPCR) assays for detecting promoter mutations (C228T, C228A, CC242-243TT, and C250T).
View Article and Find Full Text PDFBackground: Lung neuroendocrine neoplasms (LNENs) are rare solid cancers, with most genomic studies including a limited number of samples. Recently, generating the first multi-omic dataset for atypical pulmonary carcinoids and the first methylation dataset for large-cell neuroendocrine carcinomas led us to the discovery of clinically relevant molecular groups, as well as a new entity of pulmonary carcinoids (supra-carcinoids).
Results: To promote the integration of LNENs molecular data, we provide here detailed information on data generation and quality control for whole-genome/exome sequencing, RNA sequencing, and EPIC 850K methylation arrays for a total of 84 patients with LNENs.
Background & Aims: Although HBV is a major cause of death in Africa, its genetic variability has been poorly documented. This study aimed to address whether HBV genotype and surface gene variants are associated with HBV-related liver disease in The Gambia.
Methods: We conducted a case-control study nested in the Prevention of Liver Fibrosis and Cancer in Africa programme.
The emergence of next-generation sequencing (NGS) has revolutionized the way of reaching a genome sequence, with the promise of potentially providing a comprehensive characterization of DNA variations. Nevertheless, detecting somatic mutations is still a difficult problem, in particular when trying to identify low abundance mutations, such as subclonal mutations, tumour-derived alterations in body fluids or somatic mutations from histological normal tissue. The main challenge is to precisely distinguish between sequencing artefacts and true mutations, particularly when the latter are so rare they reach similar abundance levels as artefacts.
View Article and Find Full Text PDFBackground: The DNA released into the bloodstream by malignant tumours· called circulating tumour DNA (ctDNA), is often a small fraction of total cell-free DNA shed predominantly by hematopoietic cells and is therefore challenging to detect. Understanding the biological properties of ctDNA is key to the investigation of its clinical relevance as a non-invasive marker for cancer detection and monitoring.
Methods: We selected 40 plasma DNA samples of pancreatic cancer cases previously reported to carry a KRAS mutation at the 'hotspot' codon 12 and re-screened the cell-free DNA using a 4-size amplicons strategy (57 bp, 79 bp, 167 bp and 218 bp) combined with ultra-deep sequencing in order to investigate whether amplicon lengths could impact on the capacity of detection of ctDNA, which in turn could provide inference of ctDNA and non-malignant cell-free DNA size distribution.
Background: Detecting pre-clinical bladder cancer (BC) using urinary biomarkers may provide a valuable opportunity for screening and management. Telomerase reverse transcriptase (TERT) promoter mutations detectable in urine have emerged as promising BC biomarkers.
Methods: We performed a nested case-control study within the population-based prospective Golestan Cohort Study (50,045 participants, followed up to 14 years) and assessed TERT promoter mutations in baseline urine samples from 38 asymptomatic individuals who subsequently developed primary BC and 152 matched controls using a Next-Generation Sequencing-based single-plex assay (UroMuTERT) and droplet digital PCR assays.
Background: Recurrent mutations in the promoter of the telomerase reverse transcriptase (TERT) gene (C228T and C250T) detected in tumours and cells shed into urine of urothelial cancer (UC) patients are putative biomarkers for UC detection and monitoring. However, the possibility of detecting these mutations in cell-free circulating DNA (cfDNA) in blood and urine, or DNA from urinary exfoliated cells (cellDNA) with a single-gene sensitive assay has never been tested in a case-control setting.
Methods: We developed a single-plex assay (UroMuTERT) for the detection of low-abundance TERT promoter mutations.
Cutaneous beta human papillomavirus (HPV) types are suspected to be involved, together with ultraviolet (UV) radiation, in the development of non-melanoma skin cancer (NMSC). Studies in in vitro and in vivo experimental models have highlighted the transforming properties of beta HPV E6 and E7 oncoproteins. However, epidemiological findings indicate that beta HPV types may be required only at an initial stage of carcinogenesis, and may become dispensable after full establishment of NMSC.
View Article and Find Full Text PDFWe report a novel CASP9 germline mutation that may increase susceptibility to the development of brain tumors. We identified this mutation in a family in which three brain tumors had developed within three generations, including two anaplastic astrocytomas occurring in cousins. The cousins were diagnosed at similar ages (29 and 31 years), and their tumors showed similar histological features.
View Article and Find Full Text PDFTo examine the diversity of somatic alterations and clonal evolution according to aggressiveness of disease, nineteen tumor-blood pairs of 'formerly bronchiolo-alveolar carcinoma (BAC)' which had been reclassified into preinvasive lesion (adenocarcinoma in situ; AIS), focal invasive lesion (minimally invasive adenocarcinoma; MIA), and invasive lesion (lepidic predominant adenocarcinoma; LPA and non-lepidic predominant adenocarcinoma; non-LPA) according to IASLC/ATS/ERS 2011 classification were explored by whole exome sequencing. Several distinct somatic alterations were observed compare to the lung adenocarcinoma study from the Cancer Genome Atlas (TCGA). There were higher numbers of tumors with significant APOBEC mutation fold enrichment (73% vs.
View Article and Find Full Text PDFApproximately half of the familial aggregation of breast cancer remains unexplained. This proportion is less for early-onset disease where familial aggregation is greater, suggesting that other susceptibility genes remain to be discovered. The majority of known breast cancer susceptibility genes are involved in the DNA double-strand break repair pathway.
View Article and Find Full Text PDFBackground: BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction.
View Article and Find Full Text PDFFunctional characterization of long non-coding RNAs (lncRNAs) and their pathological relevance is still a challenging task. Abnormal expression of a few long non-coding RNAs have been found associated with hepatocellular carcinoma, with potential implications to both improve our understanding of molecular mechanism of liver carcinogenesis and to discover biomarkers for early diagnosis or therapy. However, the understanding of the global role of lncRNAs during HCC development is still in its infancy.
View Article and Find Full Text PDFBackground: Dietary exposure to cytotoxic and carcinogenic aristolochic acid (AA) causes severe nephropathy typically associated with urologic cancers. Monitoring of AA exposure uses biomarkers such as aristolactam-DNA adducts, detected by mass spectrometry in the kidney cortex, or the somatic A>T transversion pattern characteristic of exposure to AA, as revealed by previous DNA-sequencing studies using fresh-frozen tumors.
Methods: Here, we report a low-coverage whole-exome sequencing method (LC-WES) optimized for multisample detection of the AA mutational signature, and demonstrate its utility in 17 formalin-fixed paraffin-embedded urothelial tumors obtained from 15 patients with endemic nephropathy, an environmental form of AA nephropathy.