The role of mesenchymal cells during respiratory infection is not well defined, including whether, which, and how the different types of mesenchymal cells respond. We collected all mesenchymal cells from lung single-cell suspensions of mice that were naïve (after receiving only saline vehicle), pneumonic (after intratracheal instillation of pneumococcus 24 hours previously), or resolved from infection (after non-lethal pneumococcal infections 6 weeks previously) and performed single-cell RNA sequencing. Cells clustered into five well-separated groups based on their transcriptomes: matrix fibroblasts, myofibroblasts, pericytes, smooth muscle cells, and mesothelial cells.
View Article and Find Full Text PDFNeutrophilic asthma is a vexing disease, but mechanistic and therapeutic advancements will require better models of allergy-induced airway neutrophilia. Here, we find that periodic ovalbumin (OVA) inhalation in sensitized mice elicits rapid allergic airway inflammation and pathophysiology mimicking neutrophilic asthma. OVA-experienced murine lungs harbor diverse clusters of CD4 resident memory T (T) cells, including unconventional RORγt T helper 17 (T17) cells.
View Article and Find Full Text PDFFront Immunol
May 2024
Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (B) cells.
View Article and Find Full Text PDF