Publications by authors named "Catherine T Falk"

The complexity of data available in human genetics continues to grow at an explosive rate. With that growth, the challenges to understanding the meaning of the underlying information also grow. A currently popular approach to dissecting such information falls under the broad category of data mining.

View Article and Find Full Text PDF

Background: Alcoholism is a serious public health problem. It has both genetic and environmental causes. In an effort to gain understanding of the underlying genetic susceptibility to alcoholism, a long-term study has been undertaken.

View Article and Find Full Text PDF

Group 14 used data-mining strategies to evaluate a number of issues, including appropriate diagnosis, haplotype estimation, genetic linkage and association studies, and type I error. Methods ranged from exploratory analyses, to machine learning strategies (neural networks, supervised learning, and tree-based methods), to false discovery rate control of type I errors. The general motivations were to find the "story" in the data and to summarize information from a multitude of measures.

View Article and Find Full Text PDF

Background: The Framingham Heart Study was initiated in 1948 as a long-term longitudinal study to identify risk factors associated with cardiovascular disease (CVD). Over the years the scope of the study has expanded to include offspring and other family members of the original cohort, marker data useful for gene mapping and information on other diseases. As a result, it is a rich resource for many areas of research going beyond the original goals.

View Article and Find Full Text PDF

The Framingham Heart Study data, as well as a related simulated data set, were generously provided to the participants of the Genetic Analysis Workshop 13 in order that newly developed and emerging statistical methodologies could be tested on that well-characterized data set. The impetus driving the development of novel methods is to elucidate the contributions of genes, environment, and interactions between and among them, as well as to allow comparison between and validation of methods. The seven papers that comprise this group used data-mining methodologies (tree-based methods, neural networks, discriminant analysis, and Bayesian variable selection) in an attempt to identify the underlying genetics of cardiovascular disease and related traits in the presence of environmental and genetic covariates.

View Article and Find Full Text PDF