Heart disease is an integral part of Friedreich ataxia (FA) and the most common cause of death in this autosomal recessive disease. The result of the mutation is lack of frataxin, a small mitochondrial protein. The clinical and pathological phenotypes of FA are complex, involving brain, spinal cord, dorsal root ganglia, sensory nerves, heart, and endocrine pancreas.
View Article and Find Full Text PDFCyclin-dependent kinase 5 (CDK5) is a multifunctional serine/threonine kinase that regulates a large number of neuronal processes essential for nervous system development and function with its activator p35 CDK5R1. Upon neuronal insults, p35 is proteolyzed and cleaved to p25 producing deregulation and hyperactivation of CDK5 (CDK5/p25), implicated in tau hyperphosphorylation, a pathology in some neurodegenerative diseases. A truncated, 24 amino acid peptide, p5, derived from p35 inhibits the deregulated CDK5 phosphotransferase activity and ameliorates Alzheimer's disease (AD) phenotypes in AD model mice.
View Article and Find Full Text PDFThe proteomics analysis of protein kinases and other cell-signaling proteins in tumor samples by traditional two-dimensional (2-D) gel electrophoresis is complicated by the low abundance of these regulatory proteins relative to metabolic enzymes and structural proteins. We present an antibody-based method called Kinetworks that relies on sodium dodecyl sulfate (SDS)-poly-acrylamide minigel electrophoresis and multilane immunoblotters to permit the specific and quantitative detection of 45 or more protein kinases or other signal transduction proteins at once. The technique can also permit the resolution of these proteins based on differences in their phosphorylation state and other forms of covalent modification.
View Article and Find Full Text PDF