Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes.
View Article and Find Full Text PDFATG9A is the only polytopic protein of the mammalian autophagy-related protein family whose members regulate autophagosome formation during macroautophagy. At steady state, ATG9A localizes to several intracellular sites, including the Golgi apparatus, endosomes and the plasma membrane, and it redistributes towards autophagosomes upon autophagy induction. Interestingly, the transport of yeast Atg9 to the pre-autophagosomal structure depends on its self-association, which is mediated by a short amino acid motif located in the C-terminal region of the protein.
View Article and Find Full Text PDFBiochim Biophys Acta
September 2016
ATG9A is a multispanning membrane protein required for autophagosome formation. Under basal conditions, neosynthesized ATG9A proteins travel to the Golgi apparatus and cycle between the trans-Golgi network and endosomes. In the present work, we searched for molecular determinants involved in the subcellular trafficking of human ATG9A in HeLa cells using sequential deletions and point mutations.
View Article and Find Full Text PDFHow, in the absence of a functional mannose 6-phosphate (Man-6-P)-signal-dependent transport pathway, some acid hydrolases remain sorted to endolysosomes in the brain is poorly understood. We demonstrate that cathepsin D binds to mouse SEZ6L2, a type 1 transmembrane protein predominantly expressed in the brain. Studies of the subcellular trafficking of SEZ6L2, and its silencing in a mouse neuroblastoma cell line reveal that SEZ6L2 is involved in the trafficking of cathepsin D to endosomes.
View Article and Find Full Text PDFResveratrol (trans-3,4',5-trihydroxystilbene) is a natural polyphenol synthesized by various plants such as grape vine. Resveratrol (RSV) is a widely studied molecule, largely for its chemopreventive effect in different mouse cancer models. We propose a mechanism underlying the cytotoxic activity of RSV on colon cancer cells.
View Article and Find Full Text PDF