Treatment of cancers in the lung remains a critical challenge in the clinic for which gene therapy could offer valuable options. We describe an effective approach through systemic injection of engineered polymer/DNA nanoparticles that mediate tumor-specific expression of a therapeutic gene, under the control of the cancer-selective progression elevated gene 3 (PEG-3) promoter, to treat tumors in the lungs of diseased mice. A clinically tested, untargeted, polyethylenimine carrier was selected to aid rapid transition to clinical studies, and a CpG-free plasmid backbone and coding sequences were used to reduce inflammation.
View Article and Find Full Text PDFInhibition of the NGF/TrkA interaction presents an interesting alternative to the use of non-steroidal anti-inflammatories and/or opioids for the control of inflammatory, chronic and neuropathic pain. Most prominent of the current approaches to this therapy is the antibody Tanezumab, which is a late-stage development humanized monoclonal antibody that targets NGF. We sought to determine whether peptides might similarly inhibit the NGF/TrkA interaction and so serve as future therapeutic leads.
View Article and Find Full Text PDFMolecular imaging of cancers using probes specific for tumor-associated target proteins offers a powerful solution for providing information regarding selection of targeted therapy, patient stratification, and response to therapy. Here we demonstrate the power of bicyclic peptides as targeting probes, exemplified with the tumor-overexpressed matrix metalloproteinase MT1-MMP as a target. A bicyclic peptide with subnanomolar affinity towards MT1-MMP was identified, and its radioconjugate showed selective tumor uptake in an HT1080 xenograft mouse model.
View Article and Find Full Text PDFPlasma kallikrein, a member of the kallikrein-kinin system, catalyzes the release of the bioactive peptide bradykinin, which induces inflammation, vasodilation, vessel permeability, and pain. Preclinical evidence implicates the activity of plasma kallikrein in diabetic retinopathy, which is a leading cause of visual loss in patients suffering from diabetes mellitus. Employing a technology based on phage-display combined with chemical cyclization, we have identified highly selective bicyclic peptide inhibitors with nano- and picomolar potencies toward plasma kallikrein.
View Article and Find Full Text PDFPhosphatidic acid and phosphatidylserine are negatively charged abundant phospholipids with well-recognized structural roles in cellular membranes. They are also signaling lipids since their regulated formation (or appearance) can constitute an important signal for downstream responses. The list of potential effectors for these lipids is expanding rapidly and includes proteins involved in virtually all aspects of cellular regulation.
View Article and Find Full Text PDFThe adaptor protein Gab-2 coordinates the assembly of the IL-3 signalsome comprising Gab-2, Grb2, Shc, SHP-2 and PI3K. To investigate the role of the pleckstrin homology domain of Gab-2 in this process, epitope-tagged wild type Gab-2 (WTGab-2), Gab-2 lacking its PH domain (DeltaPHGab-2) and the Gab-2 PH domain alone (PHGab-2) were inducibly expressed in IL-3-dependent BaF/3 cells. Expression of DeltaPHGab-2 reduced IL-3-dependent proliferation and long-term activation of ERK1 and 2 and PKB by IL-3.
View Article and Find Full Text PDF