The two BRCT domains (BRCT1 and BRCT2) of XRCC1 mediate a network of protein-protein interactions with several key factors of the DNA single-strand breaks (SSBs) and base damage repair pathways. BRCT1 is required for the immediate poly(ADP-ribose)-dependent recruitment of XRCC1 to DNA breaks and is essential for survival after DNA damage. To better understand the biological role of XRCC1 in the processing of DNA ends, a search for the BRCT1 domain-associated proteins was performed by mass spectrometry of GST-BRCT1 pulled-down proteins from HeLa cell extracts.
View Article and Find Full Text PDFPoly(ADP-ribosyl)ation is an immediate DNA-damage-dependent post-translational modification of histones and other nuclear proteins that contributes to the survival of injured proliferating cells. Poly(ADP-ribose) polymerases (PARPs) now constitute a large family of 18 proteins, encoded by different genes and displaying a conserved catalytic domain in which PARP-1 (113 kDa), the founding member, and PARP-2 (62 kDa) are so far the sole enzymes whose catalytic activity has been shown to be immediately stimulated by DNA strand breaks. A large repertoire of sequences encoding novel PARPs now extends considerably the field of poly(ADP-ribosyl)ation reactions to various aspects of the cell biology including cell proliferation and cell death.
View Article and Find Full Text PDFCellular recovery from ionizing radiation (IR)-induced damage involves poly(ADP-ribose) polymerase (PARP-1 and PARP-2) activity, resulting in the induction of a signalling network responsible for the maintenance of genomic integrity. In the present work, a charged particle microbeam delivering 3.2 MeV protons from a Van de Graaff accelerator has been used to locally irradiate mammalian cells.
View Article and Find Full Text PDFThe small-molecule CCR5 antagonist SCH-C (SCH 351125) was tested for its ability to inhibit HIV-1 replication in peripheral blood mononuclear cells (PBMCs), cord blood mononuclear cells, immature dendritic cells (DCs), and macrophages. Inhibition of infection of PBMCs by virus associated with mature DC in trans was also studied. For comparison, the peptide-based fusion inhibitor T-20 and the CC-chemokine RANTES were also evaluated.
View Article and Find Full Text PDFA novel member of the poly(ADP-ribose) polymerase (PARP) family, hPARP-3, is identified here as a core component of the centrosome. hPARP-3 is preferentially localized to the daughter centriole throughout the cell cycle. The N-terminal domain (54 amino acids) of hPARP-3 is responsible for its centrosomal localization.
View Article and Find Full Text PDFInhibitors of human immunodeficiency virus type 1 attachment (CD4-immunoglobulin G subclass 2), CCR5 usage (PRO 140), and fusion (T-20) were tested on diverse primary cell types that represent the major targets both for infection in vivo and for the inhibition of trans infection of target cells by virus bound to dendritic cells. Although minor cell-type-dependent differences in potency were observed, each inhibitor was active on each cell type and trans infection was similarly vulnerable to inhibition at each stage of the fusion cascade.
View Article and Find Full Text PDFWe have investigated whether nonneutralizing monoclonal antibodies (MAbs) to the gp120 subunit of the envelope glycoprotein (Env) complex of human immunodeficiency virus type 1 (HIV-1) can interfere with HIV-1 neutralization by another anti-gp120 MAb. We used neutralizing (b12) and nonneutralizing (205-42-15, 204-43-1, 205-46-9) MAbs to the epitope cluster overlapping the CD4-binding site (CD4BS) on gp120. All the MAbs, neutralizing or otherwise, cross-competed for binding to monomeric gp120, indicating the close topological proximity of their epitopes.
View Article and Find Full Text PDF