Case Summary: A castrated male domestic shorthair cat from a wooded area in Missouri had recovered from typical severe cytauxzoonosis at 4 years of age, after intensive in-hospital supportive care and administration of atovaquone and azithromycin. At 11 years of age, the same cat again experienced an acute febrile illness compatible with cytauxzoonosis. Intraerythrocytic piroplasms typical of were identified by cytology.
View Article and Find Full Text PDFBackground: Measuring expression profiles of inflammatory biomarkers is important in monitoring the polarization of immune responses; therefore, results should be independent of quantitation methods if they are to be accepted as validated clinical pathology biomarkers. To evaluate effects of differing quantitation methods, the seven major circulating Th1/Th2/Th17 cytokines interleukin 2 (IL-2), interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), IL-4, IL-6, IL-10 and IL-17A were quantified in plasma of lipopolysaccharide (LPS)-treated mice with two different multiplex platforms.
Methods: Female C57BL6 mice were treated orally with vehicle or dexamethasone, followed by LPS intravenously.
A functional observational battery (FOB) is recommended as the first-tier neurotoxicity screening in the preclinical safety pharmacology testing guidelines. Minipigs have increasingly been used in regulatory toxicology studies; however, no current FOB protocol is available for neurotoxicity testing in these species. Hence, a minipig FOB instrument was developed.
View Article and Find Full Text PDFThe use of miniature swine as a non-rodent species in safety assessment has continued to expand for over a decade and their use has become routine, particularly in pharmacology as a model for human integumentary diseases. Translational preclinical swine study data are now favorably compared and contrasted to human data, and miniature swine models provide important information in dermal safety assessment and skin pharmacology. For example, the miniature swine model has been well-accepted for cutaneous absorption and toxicity studies due to swine integument being morphologically and functionally similar to human skin.
View Article and Find Full Text PDFThe use of the miniature swine as a nonrodent species in research has continued to expand for over a decade, and they are becoming routinely used both in experimental pharmacology and as a therapeutic model for human diseases. Miniature swine models are regularly used for studies designed to assess efficacy and safety of new therapeutic compounds given through different routes of exposure and are used as an alternative model to rodents, canines, or nonhuman primates. Translational preclinical swine study data presented here support the current understanding that miniature swine are the animal model of choice for the assessment of drugs targeting endocrine, dermal, and ocular disorders.
View Article and Find Full Text PDFFormulation of nonclinical evaluations is a challenge, with the fundamental need to achieve multiples of the clinical exposure complicated by differences in species and routes of administration-specific tolerances, depending on concentrations, volumes, dosing regimen, duration of each administration, and study duration. Current practice to approach these differences is based on individual experience and scattered literature with no comprehensive data source (the most notable exception being our 2006 publication on this same subject). Lack of formulation tolerance data results in excessive animal use, unplanned delays in the evaluation and development of drugs, and vehicle-dependent results.
View Article and Find Full Text PDFThe use of miniature swine as a nonrodent species in safety assessment has continued to expand for over a decade, and they are becoming routinely used in toxicology and in pharmacology as well as a model for human diseases. Miniature swine models are regularly used for regulatory toxicity studies designed to assess safety of new therapeutic compounds given through different routes of exposure and are used as an alternative model to the canine or the nonhuman primate. Translational preclinical swine study data presented support the current finding that miniature swine are the animal model of choice for assessment of drug absorption, tolerance, and systemic toxicity following systemic exposures.
View Article and Find Full Text PDF