Legacy polyfluoroalkyl substances (PFAS) [perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA)] are being replaced by various other fluorinated compounds, such as hexafluoropropylene oxide dimer acid (GenX). These alternatives are thought to be less bioaccumulative and, therefore, less toxic than legacy PFAS. Contaminant exposures occur concurrently with exposure to natural stressors, including the fungal pathogen ().
View Article and Find Full Text PDFConcentrations of microplastics in aquatic environments continue to rise due to industrial production and pollution. While there are various concerns regarding potential deleterious effects of microplastics on ecosystems, several knowledge gaps remain, including the potential for microplastics to directly and indirectly affect biotic interactions and food web dynamics. We explored the effects of environmentally relevant microplastic concentrations on two co-exposed species of herbaceous freshwater crustaceous zooplankton, filter feeding Daphnia dentifera and selective phytoplankton grazers Arctodiaptomus dorsalis.
View Article and Find Full Text PDFInvasive species can have large effects on native communities. When native and invasive species share parasites, an epidemic in a native species could facilitate or inhibit the invasion. We sought to understand how the incidence and timing of epidemics in native species caused by a generalist parasite influenced the success and impact of an invasive species.
View Article and Find Full Text PDFIntroduction: Voluntary medical male circumcision (VMMC) remains an effective biomedical intervention for HIV prevention in high HIV prevalence countries. In South Africa, United States Agency for International Development VMMC partners provide technical assistance to the Department of Health, at national and provincial levels in support of the establishment of VMMC sites as well as in providing direct VMMC services at site level since April 2012. We describe the outcomes of the Right to Care (RTC) VMMC program implemented in South Africa from 2012 to 2017.
View Article and Find Full Text PDFHuman-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (Cl) concentration-will affect lake food webs and if two of the lowest Cl thresholds found globally are sufficient to protect these food webs.
View Article and Find Full Text PDFThe ability of an organism to tolerate seasonal temperature changes, such as extremely cold temperatures during the winter, can be influenced by their pathogens. We tested how exposure to a virulent fungal pathogen, , affected the critical thermal minimum (CT) of two frog species, (gray treefrog) and (pickerel frog). The CT is the minimum thermal performance point of an organism, which we estimated via righting response trials.
View Article and Find Full Text PDFIntroduced pathogens can alter the geographic distribution of susceptible host species. For example, Batrachochytrium dendrobatidis (Bd) is a fungal pathogen that has been linked to the global decline and extinction of numerous amphibian species during the last four decades. A growing number of studies have described the distribution of Bd and susceptible hosts across the globe; however, knowledge on how Bd may shape the climatic niche of susceptible species is still missing.
View Article and Find Full Text PDFNatural populations encounter a variety of threats that can increase their risk of extinction. Populations can avoid extinction through evolutionary rescue (ER), which occurs when an adaptive, genetic response to selection allows a population to recover from an environmental change that would otherwise cause extinction. While the traditional framework for ER was developed with abiotic risk factors in mind, ER may also occur in response to a biotic source of demographic change, such as the introduction of a novel pathogen.
View Article and Find Full Text PDFIt is unclear how suitable human-made wetlands are for supporting wildlife and how they impact wildlife disease risk. Natural wetlands (those that were created without human actions) can support more diverse and resilient communities that are at lower risk of disease outbreaks. We compared frog community composition and infection with the pathogenic fungus Batrachochytrium dendrobatidis (Bd) between human-made and natural wetlands in Tippecanoe County, Indiana, US.
View Article and Find Full Text PDFNumerous species of amphibians declined in Central America during the 1980s and 1990s. These declines mostly affected highland stream amphibians and have been primarily linked to chytridiomycosis, a deadly disease caused by the chytrid fungus (Bd). Since then, the majority of field studies on Bd in the Tropics have been conducted in midland and highland environments (>800 m) mainly because the environmental conditions of mountain ranges match the range of ideal abiotic conditions for Bd in the laboratory.
View Article and Find Full Text PDFIt is well-established that both resources and infectious disease can influence species invasions, but little is known regarding interactive effects of these two factors. We performed a series of experiments to understand how resources and parasites can jointly affect the ability of a freshwater invasive zooplankton to establish in a population of a native zooplankton. In a life history trial, we found that both species increased offspring production to the same degree as algal resources increased, suggesting that changes in resources would have similar effects on both species.
View Article and Find Full Text PDFThe evolutionary rescue of host populations may prevent extinction from novel pathogens. However, the conditions that facilitate rapid evolution of hosts, in particular the population variation in host susceptibility, and the effects of host evolution in response to pathogens on population outcomes remain largely unknown. We constructed an individual-based model to determine the relationships between genetic variation in host susceptibility and population persistence in an amphibian-fungal pathogen () system.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
May 2017
Understanding the transmission and dynamics of infectious diseases in natural communities requires understanding the extent to which the ecology, evolution and epidemiology of those diseases are shaped by alternative hosts. We performed laboratory experiments to test how parasite spillover affected traits associated with transmission in two co-occurring parasites: the bacterium and the fungus Both parasites were capable of transmission from the reservoir host () to the spillover host (), but this occurred at a much higher rate for the fungus than the bacterium. We quantified transmission potential by combining information on parasite transmission and growth rate, and used this to compare parasite fitness in the two host species.
View Article and Find Full Text PDFVariation in host responses to pathogens can have cascading effects on populations and communities when some individuals or groups of individuals display disproportionate vulnerability to infection or differ in their competence to transmit infection. The fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been detected in almost 700 different amphibian species and is implicated in numerous global amphibian population declines. Identifying key hosts in the amphibian-Bd system-those who are at greatest risk or who pose the greatest risk for others-is challenging due in part to many extrinsic environmental factors driving spatiotemporal Bd distribution and context-dependent host responses to Bd in the wild.
View Article and Find Full Text PDFGeneralist parasites can strongly influence interactions between native and invasive species. Host competence can be used to predict how an invasive species will affect community disease dynamics; the addition of a highly competent, invasive host is predicted to increase disease. However, densities of invasive and native species can also influence the impacts of invasive species on community disease dynamics.
View Article and Find Full Text PDFWildlife epidemiological outcomes can depend strongly on the composition of an ecological community, particularly when multiple host species are affected by the same pathogen. However, the relationship between host species richness and disease risk can vary with community context and with the degree of spillover transmission that occurs among co-occurring host species. We examined the degree to which host species composition influences infection by Batrachochytrium dendrobatidis (Bd), a widespread fungal pathogen associated with amphibian population declines around the world, and whether transmission occurs from one highly susceptible host species to other co-occurring host species.
View Article and Find Full Text PDFRecent emergence and spread of the amphibian fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been attributed to a number of factors, including environmental stressors that increase host susceptibility to Bd. Physiological stress can increase circulating levels of the hormone, corticosterone, which can alter a host's physiology and affect its susceptibility to pathogens. We experimentally elevated whole-body levels of corticosterone in both larval and post-metamorphic amphibians, and subsequently tested their susceptibility to Bd.
View Article and Find Full Text PDFDirect predation upon parasites has the potential to reduce infection in host populations. For example, the fungal parasite of amphibians, Batrachochytrium dendrobatidis (Bd), is commonly transmitted through a free-swimming zoospore stage that may be vulnerable to predation. Potential predators of Bd include freshwater zooplankton that graze on organisms in the water column.
View Article and Find Full Text PDFInt J Tuberc Lung Dis
October 2013
Metamorphosis is often characterized by profound changes in morphology and physiology that can affect the dynamics of species interactions. For example, the interaction between a pathogen and its host may differ depending on the life stage of the host or pathogen. One pathogen that infects hosts with complex life cycles is the emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2011
Global declines in biodiversity are altering disease dynamics in complex and multifaceted ways. Changes in biodiversity can have several outcomes on disease risk, including dilution and amplification effects, both of which can have a profound influence on the effects of disease in a community. The dilution effect occurs when biodiversity and disease risk are inversely related, whereas the amplification effect is a positive relationship between biodiversity and disease risk.
View Article and Find Full Text PDFIn nature, individual hosts often encounter multiple pathogens simultaneously, which can lead to additive, antagonistic, or synergistic effects on hosts. Synergistic effects on infection prevalence or severity could greatly affect host populations. However, ecologists and managers often overlook the influence of pathogen combinations on hosts.
View Article and Find Full Text PDF