Objective: This study evaluates the safety/efficacy of sabatolimab plus spartalizumab in patients with melanoma or non-small cell lung cancer (NSCLC).
Design, Setting And Participants: This is a phase 1-1b/2, open-label, multinational, multicentre study of patients with advanced/metastatic melanoma or NSCLC with ≥1 measurable lesion.
Interventions: Patients were given sabatolimab 800 mg every 4 weeks plus spartalizumab 400 mg every 4 weeks until unacceptable toxicity, disease progression and/or treatment discontinuation.
The safety and efficacy of sabatolimab, a novel immunotherapy targeting T-cell immunoglobulin domain and mucin domain-3 (TIM-3), was assessed in combination with hypomethylating agents (HMAs) in patients with HMA-naive revised International Prognostic System Score (IPSS-R) high- or very high-risk myelodysplastic syndromes (HR/vHR-MDS) or chronic myelomonocytic leukemia (CMML). Sabatolimab + HMA had a safety profile similar to that reported for HMA alone and demonstrated durable clinical responses in patients with HR/vHR-MDS. These results support the ongoing evaluation of sabatolimab-based combination therapy in MDS, CMML, and acute myeloid leukemia.
View Article and Find Full Text PDFHigh levels of IL1β can result in chronic inflammation, which in turn can promote tumor growth and metastasis. Inhibition of IL1β could therefore be a promising therapeutic option in the treatment of cancer. Here, the effects of IL1β blockade induced by the mAbs canakinumab and gevokizumab were evaluated alone or in combination with docetaxel, anti-programmed cell death protein 1 (anti-PD-1), anti-VEGFα, and anti-TGFβ treatment in syngeneic and humanized mouse models of cancers of different origin.
View Article and Find Full Text PDFObjectives: Sabatolimab is a humanized monoclonal antibody (hIgG4, S228P) directed against human T-cell immunoglobulin domain and mucin domain-3 (TIM-3). Herein, we describe the development and characterization of sabatolimab.
Methods: Sabatolimab was tested for binding to its target TIM-3 and blocking properties.
Purpose: Sabatolimab (MBG453) and spartalizumab are mAbs that bind T-cell immunoglobulin domain and mucin domain-3 (TIM-3) and programmed death-1 (PD-1), respectively. This phase I/II study evaluated the safety and efficacy of sabatolimab, with or without spartalizumab, in patients with advanced solid tumors.
Patients And Methods: Primary objectives of the phase I/Ib part were to characterize the safety and estimate recommended phase II dose (RP2D) for future studies.
The blockade of immune checkpoint receptors has made great strides in the treatment of major cancers, including melanoma, Hodgkin's lymphoma, renal, and lung cancer. However, the success rate of immune checkpoint blockade is still low and some cancers, such as microsatellite-stable colorectal cancer, remain refractory to these treatments. This has prompted investigation into additional checkpoint receptors.
View Article and Find Full Text PDFBoth data in preclinical cancer models and data with T cells from patients with advanced cancer support a role for Tim-3 blockade in promoting effective anti-tumor immunity. Consequently, there is considerable interest in the clinical development of antibody-based therapeutics that target Tim-3 for cancer immunotherapy. A challenge to this clinical development is the fact that several ligands for Tim-3 have been identified: galectin-9, phosphatidylserine, HMGB1, and most recently, CEACAM1.
View Article and Find Full Text PDFOver the past 25 years, research in cancer therapeutics has largely focused on two distinct lines of enquiry. In one approach, efforts to understand the underlying cell-autonomous, genetic drivers of tumorigenesis have led to the development of clinically important targeted agents that result in profound, but often not durable, tumour responses in genetically defined patient populations. In the second parallel approach, exploration of the mechanisms of protective tumour immunity has provided several therapeutic strategies - most notably the 'immune checkpoint' antibodies that reverse the negative regulators of T cell function - that accomplish durable clinical responses in subsets of patients with various tumour types.
View Article and Find Full Text PDFNotch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28.
View Article and Find Full Text PDFBackground: Multiple myeloma is characterized by the presence of transformed neoplastic plasma cells in the bone marrow and is generally considered to be an incurable disease. Successful treatments will likely require multi-faceted approaches incorporating conventional drug therapies, immunotherapy and other novel treatments. Our lab previously showed that a combination of transient lymphodepletion (sublethal whole body irradiation) and PD-1/PD-L1 blockade generated anti-myeloma T cell reactivity capable of eliminating established disease.
View Article and Find Full Text PDFAntigen-specific immunotherapy combats autoimmunity or allergy by reinstating immunological tolerance to target antigens without compromising immune function. Optimization of dosing strategy is critical for effective modulation of pathogenic CD4(+) T-cell activity. Here we report that dose escalation is imperative for safe, subcutaneous delivery of the high self-antigen doses required for effective tolerance induction and elicits anergic, interleukin (IL)-10-secreting regulatory CD4(+) T cells.
View Article and Find Full Text PDFCytotoxic T lymphocyte-associated antigen-4 (CTLA-4; CD152) is of pivotal importance for self-tolerance, with deficiency or unfavorable polymorphisms leading to autoimmune disease. Tolerance to self-antigens is achieved through thymic deletion of highly autoreactive conventional T (Tconv) cells and generation of FoxP3(+) regulatory T (Treg) cells. The main costimulatory molecule, CD28, augments the negative selection of Tconv cells and promotes the generation of FoxP3(+) Treg cells.
View Article and Find Full Text PDFNearly a century has passed since the first report describing antigen-specific immunotherapy (antigen-SIT) was published. Research into the use of antigen-SIT in the treatment of both allergic and autoimmune disease has increased dramatically since, although its mechanism of action is only slowly being unravelled. It is clear though, from recent studies, that success of antigen-SIT depends on the induction of regulatory T (T reg) cell subsets that recognise potentially disease-inducing epitopes.
View Article and Find Full Text PDFT-cell immunoglobulin, mucin domain-3 (Tim-3) is a membrane protein expressed at late stages of IFN-gamma secreting CD4(+) Th1 cell differentiation and constitutively on DC. Ligation of Tim-3 on Th1 cells terminates Th1 immune responses. In addition, Tim-3 plays a role in tolerance induction, although the mechanism by which this is accomplished has yet to be elucidated.
View Article and Find Full Text PDFRecent studies have expanded our understanding of the role of the anti-inflammatory cytokine interleukin (IL)-10, produced by multiple lineages of both human and murine T cells, in regulating the immune response. Here, we demonstrate that the small percentage of circulating CD4(+) T cells that secrete IL-10 can be isolated from human peripheral blood and, importantly, we have optimized a protocol to expand these cells in both antigen-specific and polyclonal manners. Expanded CD4(+)IL-10(+) T cells abrogate proliferation and T helper (Th) 1-like cytokine production in an antigen-specific manner, and to a lesser extent exhibit bystander suppressive capacity.
View Article and Find Full Text PDFRegulation of the immune response to self- and foreign antigens is vitally important for limiting immune pathology associated with both infections and hypersensitivity conditions. Control of autoimmune conditions can be reinforced by tolerance induction with peptide epitopes, but the mechanism is not currently understood. Repetitive intranasal administration of soluble peptide induces peripheral tolerance in myelin basic protein (MBP)-specific TCR transgenic mice.
View Article and Find Full Text PDF