Publications by authors named "Catherine S Snyder"

Nanoparticle drug delivery has been promoted as an effective mode of delivering antineoplastic therapeutics. However, most nanoparticle designs fail to consider the multifaceted tumor microenvironment (TME) that produce pro-tumoral niches, which are often resistant to chemo- and targeted therapies. In order to target the chemoresistant cancer stem-like cells (CSCs) and their supportive TME, in this chapter we describe a nanoparticle-based targeted co-delivery that addresses the paracrine interactions between CSC and non-cancerous mesenchymal stem cells (MSCs) in the TME.

View Article and Find Full Text PDF

Epithelial ovarian cancers are among the most aggressive forms of gynecological malignancies. Despite the advent of poly adenosine diphosphate-ribose polymerase (PARP) and checkpoint inhibitors, improvement to patient survival has been modest. Limited in part by clinical translation, beneficial therapeutic strategies remain elusive in ovarian cancers.

View Article and Find Full Text PDF

Intractable human diseases such as cancers, are context dependent, unique to both the individual patient and to the specific tumor microenvironment. However, conventional cancer treatments are often nonspecific, targeting global similarities rather than unique drivers. This limits treatment efficacy across heterogeneous patient populations and even at different tumor locations within the same patient.

View Article and Find Full Text PDF

Within the ovarian cancer tumor microenvironment, cancer stem-like cells (CSC) interact with carcinoma associated mesenchymal stem/stromal cells (CA-MSC) through multiple secreted cytokines and growth factors. These paracrine interactions have been revealed to cause enrichment of CSC and their chemoprotection; however, it is still not known if platelet-derived growth factor (PDGF) signaling is involved in facilitating these responses. In order to probe this undiscovered bidirectional communication, we created a model of ovarian malignant ascites in the three-dimensional (3D) hanging drop heterospheroid array, with CSC and CA-MSC.

View Article and Find Full Text PDF

Fabrication of charged, multiphasic, polymeric micro- and nanoparticles with precise control over their composition, size, and shape is critical for developing the next generation of drug carriers for combinatorial therapies and theranostics. The addition of charged polyelectrolyte multilayers on the surface of polymeric particles can significantly improve their stability, targeting efficacy, drug-release kinetics, and their ability to encapsulate different drugs within a single particle. Many of the traditional methods for multilayer functionalization of multiphasic polymeric particles are time and energy intensive which significantly limits their scalability, and therefore therapeutic potential.

View Article and Find Full Text PDF

In this protocol, we outline the procedure for generation of tumor spheroids within 384-well hanging droplets to allow for high-throughput screening of anti-cancer therapeutics in a physiologically representative microenvironment. We outline the formation of patient derived cancer stem cell spheroids, as well as, the manipulation of these spheroids for thorough analysis following drug treatment. Specifically, we describe collection of spheroid morphology, proliferation, viability, drug toxicity, cell phenotype and cell localization data.

View Article and Find Full Text PDF

Herein we report the development of a cytometric analysis platform for measuring the contents of individual cells in absolute (picogram) scales; this study represents the first report of Raman-based quantitation of the absolute mass - or the total amount - of multiple endogenous biomolecules within single-cells. To enable ultraquantitative calibration, we engineered single-cell-sized micro-calibration standards of known composition by inkjet-printer deposition of biomolecular components in microarrays across the surface of silicon chips. We demonstrate clinical feasibility by characterizing the compositional phenotype of human skin fibroblast and porcine alveolar macrophage cell populations in the respective contexts of Niemann-Pick disease and drug-induced phospholipidosis: two types of lipid storage disorders.

View Article and Find Full Text PDF

Tumors are not merely cancerous cells that undergo mindless proliferation. Rather, they are highly organized and interconnected organ systems. Tumor cells reside in complex microenvironments in which they are subjected to a variety of physical and chemical stimuli that influence cell behavior and ultimately the progression and maintenance of the tumor.

View Article and Find Full Text PDF