Publications by authors named "Catherine Panayiotou"

A rise in intraluminal pressure triggers vasoconstriction in resistance arteries, which is associated with local generation of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE). Importantly, dysregulation of 20-HETE synthesis and activity has been implicated in several cardiovascular disease states, including ischemic disease, hypertension, and stroke; however, the exact molecular pathways involved in mediating 20-HETE bioactivity are uncertain. We investigated whether 20-HETE activates the transient receptor potential vanilloid 1 (TRPV1) and thereby regulates vascular function and blood pressure.

View Article and Find Full Text PDF

TRPV1 is a member of the transient receptor potential ion channel family and is gated by capsaicin, the pungent component of chili pepper. It is expressed predominantly in small diameter peripheral nerve fibers and is activated by noxious temperatures >42 °C. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P-450 4A/4F-derived metabolite of the membrane phospholipid arachidonic acid.

View Article and Find Full Text PDF
Article Synopsis
  • C-type natriuretic peptide (CNP) promotes endothelial cell growth and inhibits vascular smooth muscle cell proliferation through activation of the natriuretic peptide receptor NPR3 and the ERK 1/2 pathway.
  • Experiments showed that the effects of CNP on cell proliferation in human umbilical vein endothelial cells and rat aortic smooth muscle cells were concentration-dependent and blocked by specific inhibitors.
  • These findings suggest that targeting the NPR3 pathway could be a new strategy for treating vascular conditions by addressing endothelial damage and vascular smooth muscle hyperplasia.
View Article and Find Full Text PDF

Background And Purpose: Excessive production of nitric oxide (NO) by inducible NO synthase (iNOS) is thought to underlie the vascular dysfunction, systemic hypotension and organ failure that characterize endotoxic shock. Plasma levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) are raised in animal models and humans with endotoxic shock and correlate with the associated cardiovascular dysfunction. Since both NO and natriuretic peptides play important roles in cardiovascular homeostasis via activation of guanylate cyclase-linked receptors, we used mice lacking natriuretic peptide receptor (NPR)-A (NPR1) to establish if natriuretic peptides contribute to the cardiovascular dysfunction present in endotoxic shock.

View Article and Find Full Text PDF

Hypercholesterolemia is associated with decreased nitric oxide (NO) bioavailability and endothelial dysfunction, a phenomenon thought to have a major role in the altered cerebral blood flow evident in stroke. Therefore, strategies that increase endothelial NO production have potential utility. Vascular reactivity of the middle cerebral artery (MCA) from C57BL/6J wild-type (WT) mice, apolipoprotein-E knockout (ApoE(-/-)) mice, and mice treated with the phosphodiesterase inhibitor cilostazol (100 mg/kg) was analyzed using the tension myograph.

View Article and Find Full Text PDF

Soluble guanylyl cyclase (sGC) is the principal receptor for NO and plays a ubiquitous role in regulating cellular function. This is exemplified in the cardiovascular system where sGC governs smooth muscle tone and growth, vascular permeability, leukocyte flux, and platelet aggregation. As a consequence, aberrant NO-sGC signaling has been linked to diseases including hypertension, atherosclerosis, and stroke.

View Article and Find Full Text PDF

Objective: C-type natriuretic peptide (CNP) has recently been suggested to represent an endothelium-derived hyperpolarising factor (EDHF) in the mammalian resistance vasculature and, as such, important in the regulation of local blood flow and systemic blood pressure. Additionally, this peptide has been shown to protect against ischaemia-reperfusion injury and inhibits leukocyte and platelet activation. Herein, we use a novel, selective natriuretic peptide receptor-C (NPR-C) antagonist (M372049) to highlight the pivotal contribution of CNP/NPR-C signalling in the EDHF-dependent regulation of vascular tone and investigate the mechanism(s) underlying the release and biological activity of CNP.

View Article and Find Full Text PDF