Key molecular regulators of acquired radiation resistance in recurrent glioblastoma (GBM) are largely unknown, with a dearth of accurate preclinical models. To address this, we generated 8 GBM patient-derived xenograft (PDX) models of acquired radiation therapy-selected (RTS) resistance compared with same-patient, treatment-naive (radiation-sensitive, unselected; RTU) PDXs. These likely unique models mimic the longitudinal evolution of patient recurrent tumors following serial radiation therapy.
View Article and Find Full Text PDFGlioblastoma harbors frequent alterations in receptor tyrosine kinases, phosphatidylinositol‑3 kinase (PI3K) and phosphatase and tensin homolog (PTEN) that dysregulate phospholipid signaling driven tumor proliferation and therapeutic resistance. Myristoylated alanine‑rich C‑kinase substrate (MARCKS) is a 32 kDa intrinsically unstructured protein containing a polybasic (+13) effector domain (ED), which regulates its electrostatic sequestration of phospholipid phosphatidylinositol (4,5)‑bisphosphate (PIP2), and its binding to phosphatidylserine, calcium/calmodulin, filamentous actin, while also serving as a nuclear localization sequence. MARCKS ED is phosphorylated by protein kinase C (PKC) and Rho‑associated protein kinase (ROCK) kinases; however, the impact of MARCKS on glioblastoma growth and radiation sensitivity remains undetermined.
View Article and Find Full Text PDFPediatric high-grade brain tumors and adult glioblastoma are associated with significant morbidity and mortality. Oncolytic herpes simplex virus-1 (oHSV) is a promising approach to target brain tumors; oHSV G207 and M032 (encodes human interleukin-12) are currently in phase I clinical trials in children with malignant supratentorial brain tumors and adults with glioblastoma, respectively. We sought to compare the sensitivity of patient-derived pediatric malignant brain tumor and adult glioblastoma xenografts to these clinically-relevant oHSV.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM), the most common form of primary malignant brain cancer in adults, is a devastating disease for which effective treatment has remained elusive for over 75 years. One reason for the minimal progress during this time is the lack of accurate preclinical models to represent the patient's tumor's in vivo environment, causing a disconnect in drug therapy effectiveness between the laboratory and clinic. While patient-derived xenografts (PDX's or xenolines) are excellent human tumor representations, they are not amenable to high throughput testing.
View Article and Find Full Text PDFThe use of patient-derived xenografts for modeling cancers has provided important insight into cancer biology and drug responsiveness. However, they are time consuming, expensive, and labor intensive. To overcome these obstacles, many research groups have turned to spheroid cultures of cancer cells.
View Article and Find Full Text PDFBackground: Childhood medulloblastoma is associated with significant morbidity and mortality that is compounded by neurotoxicity for the developing brain caused by current therapies, including surgery, craniospinal radiation, and chemotherapy. Innate therapeutic resistance of some aggressive pediatric medulloblastoma has been attributed to a subpopulation of cells, termed cancer-initiating cells or cancer stemlike cells (CSCs), marked by the surface protein CD133 or CD15. Brain tumors characteristically contain areas of pathophysiologic hypoxia, which has been shown to drive the CSC phenotype leading to heightened invasiveness, angiogenesis, and metastasis.
View Article and Find Full Text PDFDue to their stem-like characteristics and their resistance to existing chemo- and radiation therapies, there is a growing appreciation that cancer stem cells (CSCs) are the root cause behind cancer metastasis and recurrence. However, these cells represent a small subpopulation of cancer cells and are difficult to propagate in vitro. Glioblastoma is an extremely deadly form of brain cancer that is hypothesized to have a subpopulation of CSCs called glioblastoma stem cells (GSCs; also called brain tumor initiating cells, BTICs).
View Article and Find Full Text PDFHuman γδ T cells are potent effectors against glioma cell lines in vitro and in human/mouse xenograft models of glioblastoma, however, this effect has not been investigated in an immunocompetent mouse model. In this report, we established GL261 intracranial gliomas in syngeneic WT C57BL/6 mice and measured circulating γδ T cell count, phenotype, Vγ/Vδ repertoire, tumor histopathology, NKG2D ligands expression, and T cell invasion at day 10-12 post-injection and at end stage. Circulating γδ T cells transiently increased and upregulated Annexin V expression at post-tumor day 10-12 followed by a dramatic decline in γδ T cell count at end stage.
View Article and Find Full Text PDFSrc family kinases (SFKs) are highly expressed and active in clinical glioblastoma multiforme (GBM) specimens. SFKs inhibitors have been demonstrated to inhibit proliferation and migration of glioma cells. However, the role of SFKs in glioma stem cells (GSCs), which are important for treatment resistance and recurrence, has not been reported.
View Article and Find Full Text PDFAberrant activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway has been implicated in glioblastoma (GBM) progression. To develop a therapeutic strategy to inhibit STAT-3 signaling, we have evaluated the effects of AZD1480, a pharmacologic inhibitor of JAK1 and JAK2. In this study, the in vitro efficacy of AZD1480 was tested in human and murine glioma cell lines.
View Article and Find Full Text PDFWe have previously shown that expanded/activated γδ T cells from healthy donors are cytotoxic to GBM cell lines and primary GBM explants. In this report, we examined the therapeutic effect of intracranial infusion of expanded/activated γδ T cells on human minimal and established U251 tumor xenografts in athymic nude mice. Immunohistochemistry was used to determine the presence of NKG2D ligands on cell lines and tumors, and blocking studies were used to determine the effect of these ligands on γδ T cell recognition.
View Article and Find Full Text PDFOncolytic herpes simplex viruses (HSV) hold promise for therapy of glioblastoma multiforme (GBM) resistant to traditional therapies. We examined the ability of genetically engineered HSV to infect and kill cells that express CD133, a putative marker of glioma progenitor cells (GPC), to determine if GPC have an inherent therapeutic resistance to HSV. Expression of CD133 and CD111 (nectin-1), the major entry molecule for HSV, was variable in six human glioma xenografts, at initial disaggregation and after tissue culture.
View Article and Find Full Text PDFLong-term survivors of glioblastoma multiforme, the most common form of primary intracranial malignancy in adults, are extremely rare. Experimental animal models that more closely resemble human disease are essential for the identification of effective novel therapies. We report here an extensive analysis of the 4C8 glioma model to assess its suitability for evaluating novel type 1 herpes simplex virus (HSV-1) therapies of malignant glioma.
View Article and Find Full Text PDF