Publications by authors named "Catherine Owczarek"

Cytokines are small proteins that are critical for controlling the growth and activity of hematopoietic cells by binding to cell surface receptors and transmitting signals across membranes. The β common (βc) cytokine receptor family, consisting of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 cytokine receptors, is an architype of the heterodimeric cytokine receptor systems. We now know that signaling by cytokine receptors is not always an "all or none" phenomenon.

View Article and Find Full Text PDF

Background: Longitudinal studies have identified childhood asthma as a risk factor for obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO) where persistent airflow limitation can develop more aggressively. However, a causal link between childhood asthma and COPD/ACO remains to be established. Our study aimed to model the natural history of childhood asthma and COPD and to investigate the cellular/molecular mechanisms that drive disease progression.

View Article and Find Full Text PDF

Background: Patients with severe asthma can present with eosinophilic type 2 (T2), neutrophilic, or mixed inflammation that drives airway remodeling and exacerbations and represents a major treatment challenge. The common β (βc) receptor signals for 3 cytokines, GM-CSF, IL-5, and IL-3, which collectively mediate T2 and neutrophilic inflammation.

Objective: To determine the pathogenesis of βc receptor-mediated inflammation and remodeling in severe asthma and to investigate βc antagonism as a therapeutic strategy for mixed granulocytic airway disease.

View Article and Find Full Text PDF

The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are one of the most successful and versatile protein-based pharmaceutical products used to treat multiple pathological conditions. The remarkable specificity of mAbs and their affinity for biological targets has led to the implementation of mAbs in the therapeutic regime of oncogenic, chronic inflammatory, cardiovascular, and infectious diseases. Thus, the discovery of novel mAbs with defined functional activities is of crucial importance to expand our ability to address current and future clinical challenges.

View Article and Find Full Text PDF

Background And Objective: Chronic obstructive pulmonary disease (COPD) is a devastating disease commonly caused by cigarette smoke (CS) exposure that drives tissue injury by persistently recruiting myeloid cells into the lungs. A significant portion of COPD patients also present with overlapping asthma pathology including eosinophilic inflammation. The β cytokine family includes granulocyte monocyte-colony-stimulating factor, IL-5 and IL-3 that signal through their common receptor subunit β to promote the expansion and survival of multiple myeloid cells including monocytes/macrophages, neutrophils and eosinophils.

View Article and Find Full Text PDF

Human Complement Receptor 1 (HuCR1) is a potent membrane-bound regulator of complement both in vitro and in vivo, acting via interaction with its ligands C3b and C4b. Soluble versions of HuCR1 have been described such as TP10, the recombinant full-length extracellular domain, and more recently CSL040, a truncated version lacking the C-terminal long homologous repeat domain D (LHR-D). However, the role of N-linked glycosylation in determining its pharmacokinetic (PK) and pharmacodynamic (PD) properties is only partly understood.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is triggered by various aetiological factors such as trauma, sepsis and respiratory viruses including SARS-CoV-2 and influenza A virus. Immune profiling of severe COVID-19 patients has identified a complex pattern of cytokines including granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-5, which are significant mediators of viral-induced hyperinflammation. This strong response has prompted the development of therapies that block GM-CSF and other cytokines individually to limit inflammation related pathology.

View Article and Find Full Text PDF

Allergic contact dermatitis (ACD) is a prevalent and poorly controlled inflammatory disease caused by skin infiltration of T cells and granulocytes. The beta common (β) cytokines GM-CSF, IL-3, and IL-5 are powerful regulators of granulocyte function that signal through their common receptor subunit β, a property that has made β an attractive target to simultaneously inhibit these cytokines. However, the species specificity of β has precluded testing of inhibitors of human β in mouse models.

View Article and Find Full Text PDF

Cell-free hemoglobin (Hb) is a driver of disease progression in conditions with intravascular or localized hemolysis. Genetic and acquired anemias or emergency medical conditions such as aneurysmal subarachnoid hemorrhage involve tissue Hb exposure. Haptoglobin (Hp) captures Hb in an irreversible protein complex and prevents its pathophysiological contributions to vascular nitric oxide depletion and tissue oxidation.

View Article and Find Full Text PDF

Plasma hemopexin (HPX) is the key antioxidant protein of the endogenous clearance pathway that limits the deleterious effects of heme released from hemoglobin and myoglobin (the term "heme" is used in this article to denote both the ferrous and ferric forms). During intra-vascular hemolysis, heme partitioning to protein and lipid increases as the plasma concentration of HPX declines. Therefore, the development of HPX as a replacement therapy during high heme stress could be a relevant intervention for hemolytic disorders.

View Article and Find Full Text PDF

Polysialylation is the enzymatic addition of a highly negatively charged sialic acid polymer to the non-reducing termini of glycans. Polysialylation plays an important role in development, and is involved in neurological diseases, neural tissue regeneration, and cancer. Polysialic acid (PSA) is also a biodegradable and non-immunogenic conjugate to therapeutic drugs to improve their pharmacokinetics.

View Article and Find Full Text PDF

The ability to engineer monoclonal antibodies (mAbs) with high specificity made mAbs the fastest growing segment in the drug market. mAbs represent 8 of the top 20 selling drugs with combined sales of more than 57 billion US$ per year. The ability to purify large numbers of mAbs with sufficient yields for initial screening campaigns has direct impact on the timelines of a project.

View Article and Find Full Text PDF

Antibody Secreting Cells (ASCs) are a fundamental component of humoral immunity, however, deregulated or excessive antibody production contributes to the pathology of autoimmune diseases, while transformation of ASCs results in the malignancy Multiple Myeloma (MM). Despite substantial recent improvements in treating these conditions, there is as yet no widely used ASC-specific therapeutic approach, highlighting a critical need to identify novel methods of targeting normal and malignant ASCs. Surface molecules specifically expressed by the target cell population represent ideal candidates for a monoclonal antibody-based therapy.

View Article and Find Full Text PDF

Background: Preclinical studies have evaluated haptoglobin (Hp) polymers from pooled human plasma as a therapeutic protein to attenuate toxic effects of cell-free hemoglobin (Hb). Proof of concept studies have demonstrated efficacy of Hp in hemolysis associated with transfusion and sickle cell anemia. However, phenotype-specific Hp products might be desirable to exploit phenotype specific activities of Hp 1-1 versus Hp 2-2, offering opportunities for recombinant therapeutics.

View Article and Find Full Text PDF

The β common ([βc]/CD131) family of cytokines comprises granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5, all of which use βc as their key signaling receptor subunit. This is a prototypic signaling subunit-sharing cytokine family that has unveiled many biological paradigms and structural principles applicable to the IL-2, IL-4, and IL-6 receptor families, all of which also share one or more signaling subunits. Originally identified for their functions in the hematopoietic system, the βc cytokines are now known to be truly pleiotropic, impacting on multiple cell types, organs, and biological systems, and thereby controlling the balance between health and disease.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) envelope glycoprotein E2 is the major target of broadly neutralizing antibodies and is the focus of efforts in the rational design of a universal B cell vaccine against HCV. The E2 glycoprotein exhibits a high degree of amino acid variability which localizes to three discrete regions: hypervariable region 1 (HVR1), hypervariable region 2 (HVR2), and the intergenotypic variable region (igVR). All three variable regions contribute to immune evasion and/or isolate-specific structural variations, both important considerations for vaccine design.

View Article and Find Full Text PDF

Unlabelled: A vaccine that prevents hepatitis C virus (HCV) infection is urgently needed to support an emerging global elimination program. However, vaccine development has been confounded because of HCV's high degree of antigenic variability and the preferential induction of type-specific immune responses with limited potency against heterologous viral strains and genotypes. We showed previously that deletion of the three variable regions from the E2 receptor-binding domain (Δ123) increases the ability of human broadly neutralizing antibodies (bNAbs) to inhibit E2-CD81 receptor interactions, suggesting improved bNAb epitope exposure.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) have become the fastest growing segment in the drug market with annual sales of more than 40 billion US$ in 2013. The selection of lead candidate molecules involves the generation of large repertoires of antibodies from which to choose a final therapeutic candidate. Improvements in the ability to rapidly produce and purify many antibodies in sufficient quantities reduces the lead time for selection which ultimately impacts on the speed with which an antibody may transition through the research stage and into product development.

View Article and Find Full Text PDF

Rationale: Hemolysis occurs not only in conditions such as sickle cell disease and malaria but also during transfusion of stored blood, extracorporeal circulation, and sepsis. Cell-free Hb depletes nitric oxide (NO) in the vasculature, causing vasoconstriction and eventually cardiovascular complications. We hypothesize that Hb-binding proteins may preserve vascular NO signaling during hemolysis.

View Article and Find Full Text PDF

The β common-signaling cytokines interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-5 stimulate pro-inflammatory activities of haematopoietic cells via a receptor complex incorporating cytokine-specific α and shared β common (βc, CD131) receptor. Evidence from animal models and recent clinical trials demonstrate that these cytokines are critical mediators of the pathogenesis of inflammatory airway disease such as asthma. However, no therapeutic agents, other than steroids, that specifically and effectively target inflammation mediated by all 3 of these cytokines exist.

View Article and Find Full Text PDF

The development of therapeutic vaccines for treatment of established cancer has proven challenging. Cancer vaccines not only need to induce a robust tumor Ag-specific immune response but also need to overcome the tolerogenic and immunosuppressive microenvironments that exist within many solid cancers. ISCOMATRIX adjuvant (ISCOMATRIX) is able to induce both tumor Ag-specific cellular and Ab responses to protect mice against tumor challenge, but this is insufficient to result in regression of established solid tumors.

View Article and Find Full Text PDF

Interleukin-3 (IL-3) is an activated T cell product that bridges innate and adaptive immunity and contributes to several immunopathologies. Here, we report the crystal structure of the IL-3 receptor α chain (IL3Rα) in complex with the anti-leukemia antibody CSL362 that reveals the N-terminal domain (NTD), a domain also present in the granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-5, and IL-13 receptors, adopting unique "open" and classical "closed" conformations. Although extensive mutational analyses of the NTD epitope of CSL362 show minor overlap with the IL-3 binding site, CSL362 only inhibits IL-3 binding to the closed conformation, indicating alternative mechanisms for blocking IL-3 signaling.

View Article and Find Full Text PDF

Interleukin-13 (IL-13) is a cytokine implicated in airway diseases such as asthma and idiopathic pulmonary fibrosis. IL-13 signals through a heterodimeric receptor complex consisting of IL-13Rα1 and IL-4Rα, known as the type II IL-4R. IL-4 also signals through this receptor and as such many of the biological effects of IL-13 and IL-4 are similar.

View Article and Find Full Text PDF