Beta oscillations (12-30 Hz) in local field potentials are prevalent in the motor system, yet their functional role within the context of planning a movement is still debated. In this study, a human participant implanted with a multielectrode array in the hand area of primary motor cortex (MI) was instructed to plan a movement using either the second or fourth of five sequentially presented instruction cues. The beta amplitude increased from the start of the trial until the informative (second or fourth) cue, and was diminished afterwards.
View Article and Find Full Text PDFPrimary motor cortex (M1), a key region for voluntary motor control, has been considered a first choice as the source of neural signals to control prosthetic devices for humans with paralysis. Less is known about the potential for other areas of frontal cortex as prosthesis signal sources. The frontal cortex is widely engaged in voluntary behavior.
View Article and Find Full Text PDFThe idea of connecting the human brain to a computer or machine directly is not novel and its potential has been explored in science fiction. With the rapid advances in the areas of information technology, miniaturization and neurosciences there has been a surge of interest in turning fiction into reality. In this paper the authors review the current state-of-the-art of brain-computer and brain-machine interfaces including neuroprostheses.
View Article and Find Full Text PDF