Publications by authors named "Catherine Nauraye"

The biology underlying proton minibeam radiation therapy (pMBRT) is not fully understood. Here we aim to elucidate the biological effects of pMBRT using Fourier Transform Infrared Microspectroscopy (FTIRM). In vitro (CTX-TNA2 astrocytes and F98 glioma rat cell lines) and in vivo (healthy and F98-bearing Fischer rats) irradiations were conducted, with conventional proton radiotherapy and pMBRT.

View Article and Find Full Text PDF

Radiotherapy (RT) is one of the most frequently used methods for cancer treatment. Despite remarkable advancements in RT techniquesthe treatment of radioresistant tumours (i.e.

View Article and Find Full Text PDF

Purpose: Proton minibeam radiation therapy (pMBRT) is a novel radiation therapy approach that exploits the synergies of proton therapy with the gain in normal tissue preservation observed upon irradiation with narrow, spatially fractionated, beams. The net gain in normal tissue sparing that has been shown by pMBRT may lead to the efficient treatment of very radioresistant tumors, which are currently mostly treated palliatively. The aim of this study was to perform an evaluation of the tumor effectiveness of proton minibeam radiation therapy for the treatment of RG2 glioma-bearing rats.

View Article and Find Full Text PDF

Introduction: The depth-dose distribution of a proton beam, materialized by the Bragg peak makes it an attractive radiation modality as it reduces exposure of healthy tissues to radiations, compared with photon therapy Prominent indications, based on a long-standing experience are: intraocular melanomas, low-grade skull-base and spinal canal malignancies. However, many others potential indications are under investigations such as the benign morbid conditions that are compatible with an extended life-expectancy: low grade meningiomas, paragangliomas, pituitary adenomas, neurinomas craniopharyngioma or recurrent pleomorphic adenomas.

Materials: Given the radiation-induced risk of secondary cancer and the potential neurocognitive and functional alteration with photonic radiotherapy, we systematically analyzed the existing clinical literature about the use of proton therapy as an irradiation modality for cervical or intracranial benign tumors.

View Article and Find Full Text PDF

Proton minibeam radiation therapy (pMBRT) is a novel strategy which has already shown a remarkable reduction in neurotoxicity as to compared with standard proton therapy. Here we report on the first evaluation of tumor control effectiveness in glioma bearing rats with highly spatially modulated proton beams. Whole brains (excluding the olfactory bulb) of Fischer 344 rats were irradiated.

View Article and Find Full Text PDF

Purpose: Proton minibeam radiation therapy (pMBRT) is an innovative approach that combines the advantages of minibeam radiation therapy with the more precise ballistics of protons to further reduce the side effects of radiation. One of the main challenges of this approach is the generation of very narrow proton pencil beams with an adequate dose-rate to treat patients within a reasonable treatment time (several minutes) in existing clinical facilities. The aim of this study was to demonstrate the feasibility of implementing pMBRT by combining the pencil beam scanning (PBS) technique with the use of multislit collimators.

View Article and Find Full Text PDF

Purpose: Recent in vivo investigations have shown that short pulses of electrons at very high dose rates (FLASH) are less harmful to healthy tissues but just as efficient as conventional dose-rate radiation to inhibit tumor growth. In view of the potential clinical value of FLASH and the availability of modern proton therapy infrastructures to achieve this goal, we herein describe a series of technological developments required to investigate the biology of FLASH irradiation using a commercially available clinical proton therapy system.

Methods And Materials: Numerical simulations and experimental dosimetric characterization of a modified clinical proton beamline, upstream from the isocenter, were performed with a Monte Carlo toolkit and different detectors.

View Article and Find Full Text PDF

Proton minibeam radiation therapy (pMBRT) is a novel strategy for minimizing normal tissue damage resulting from radiotherapy treatments. This strategy partners the inherent advantages of protons for radiotherapy with the gain in normal tissue preservation observed upon irradiation with narrow, spatially fractionated beams. In this study, whole brains (excluding the olfactory bulb) of Fischer 344 rats (n = 16) were irradiated at the Orsay Proton Therapy Center.

View Article and Find Full Text PDF

Purpose: To assess the planning, treatment, and follow-up strategies worldwide in dedicated proton therapy ocular programs.

Methods And Materials: Ten centers from 7 countries completed a questionnaire survey with 109 queries on the eye treatment planning system (TPS), hardware/software equipment, image acquisition/registration, patient positioning, eye surveillance, beam delivery, quality assurance (QA), clinical management, and workflow.

Results: Worldwide, 28,891 eye patients were treated with protons at the 10 centers as of the end of 2014.

View Article and Find Full Text PDF

Purpose: Previously we showed that the relative biological efficiency for induced cell killing by the 76-MeV beam used at the Institut Curie Proton Therapy Center in Orsay increased with depth throughout the spread-out Bragg peak (SOBP). To investigate the repair pathways underlying this increase, we used an isogenic human cell model in which individual DNA repair proteins have been depleted, and techniques dedicated to precise measurements of radiation-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs).

Methods And Materials: The 3-Gy surviving fractions of HeLa cells individually depleted of Ogg1, XRCC1, and PARP1 (the base excision repair/SSB repair pathway) or of ATM, DNA-PKcs, XRCC4, and Artemis (nonhomologous end-joining pathway) were determined at the 3 positions previously defined in the SOBP.

View Article and Find Full Text PDF

Purpose: Treatment planning in proton therapy uses a generic value for the relative biological efficiency (RBE) of 1.1 throughout the spread-out Bragg peak (SOBP) generated. In this article, we report on the variation of the RBE with depth in the SOBP of the 76- and 201-MeV proton beams used for treatment at the Institut Curie Proton Therapy Center in Orsay.

View Article and Find Full Text PDF

Purpose: This study reports the results of proton beam radiotherapy based on a retrospective series of patients treated for uveal melanoma at the Orsay Center.

Methods And Materials: Between September 1991 and September 2001, 1,406 patients with uveal melanoma were treated by proton beam radiotherapy. A total dose of 60 cobalt Gray equivalent (CGE) was delivered in 4 fractions on 4 days.

View Article and Find Full Text PDF

To define the prognostic factors for local control and overall survival among 100 consecutive patients with chordoma of the base of skull or upper cervical spine treated by fractionated irradiation combining proton and photon beams. Between December 1993 and August 2002, 100 patients (median age: 53 years [8 - 85], M/F sex ratio: 3/2) were treated by a combination of high-energy photons and protons. The proton component was delivered at the Centre de Protonthérapie d'Orsay (CPO) by a 201 MeV beam.

View Article and Find Full Text PDF