Publications by authors named "Catherine M Pelland"

Purpose The purpose of this study was to identify predictors of levator veli palatini (LVP) muscle shortening and maximum contraction velocity in adults with normal anatomy. Method Twenty-two Caucasian English-speaking adults with normal speech and resonance were recruited. Participants included 11 men and 11 women ( = 22.

View Article and Find Full Text PDF

Purpose The purpose of this study is to examine the differences in velopharyngeal dimensions as well as levator veli palatini (levator) muscle morphology, positioning, and symmetry of children with repaired cleft palate with velopharyngeal insufficiency (VPI), children with repaired cleft palate with complete velopharyngeal closure, and children with noncleft anatomy. Method Fifteen children ranging in age from 4 to 8 years were recruited for this study. Ten of the participants had a history of repaired cleft palate, half with documented VPI and the other half with velopharyngeal closure.

View Article and Find Full Text PDF

Purpose The aim of this study was to develop a method able to quantify levator veli palatini (LVP) muscle shortening and contraction velocities using dynamic magnetic resonance imaging (MRI) throughout speech samples and relate these measurements to velopharyngeal portal dimensions. Method Six healthy adults (3 men and 3 women, M = 24.5 years) produced syllables representing 4 different manners of production during real-time dynamic MRI scans.

View Article and Find Full Text PDF

Purpose: To develop a real-time dynamic MRI method for comprehensive evaluation of velum movement during speech.

Methods: Dynamic MRI has been used to study velopharyngeal insufficiency (VPI) by imaging the movement of the velum during speech, because it can provide good anatomic details with no exposed radiation. To be able to comprehensively evaluate dynamic velum movement, a real-time spiral non-balanced SSFP sequence was developed with simultaneous dual-planar coverage and improved spatial and temporal resolution using a combination of parallel imaging and spatial and temporal compressed sensing to achieve 6 × acceleration.

View Article and Find Full Text PDF

The levator veli palatini (LVP) muscle has long been recognized as the muscle that contributes most to velopharyngeal (VP) closure and is therefore of principal importance for restoring normal speech in patients with a cleft palate. Different surgical reconstructive procedures can utilize varying degrees of LVP overlap, and this study developed a new finite-element model of VP closure designed to understand the biomechanical effects of LVP overlap. A three-dimensional finite-element model was created from adult anatomical dimensions and parameters taken from the literature.

View Article and Find Full Text PDF